Towards the Generalization of Value Profiling
for High-Performance Application Optimization

Value Profiling made easy: MAQAO VPROF

Sylvain Henry =~ Hugo Bolloré

Emmanuel Oseret

Exascale Computing Research Laboratory
Campus Teratec
91680 Bruyeres-le-Chatel, France

first.name@exascale-computing.eu

Abstract

Value profiling is a useful profiling method but it is often neglected
because of the lack of methods and tools to perform it easily, effi-
ciently and independently of the compilation chain. This is a pity
because it can really increase program performance by analyzing
their behavior at runtime and finding invariant or semi-invariant
values that can lead to several optimizations (vectorization, special-
ization, memoization, etc.). We propose a method that relies on bi-
nary program patching to be generically applicable in addition to be
easy to use, non-invasive and relatively fast. This work shows that
value profiling can be generalized and that it should be integrated
into the optimization process of high-performance applications.

1. Introduction

Suppose you want to optimize a scientific application (i.e. for which
bottlenecks are in computational kernels, not in I/O handling). The
usual steps to do that are:

1. Identify the “hot spots” — functions and loops where most of
the time is spent and try to characterize the performance issue
(compute bound, memory bound, etc.)

2. Optimize their source code as much as possible

3. Analyze their binary code to find new optimization opportuni-
ties that are specific to the targeted architecture or not trivial
(e.g. best loop unrolling factors, vectorization hints, cache is-
sues, etc.)

4. Try to find invariant or semi-invariant variables for a represen-
tative dataset (also called value profling) and optimize the code
for these values: specialization, memoization, loop unrolling,
etc.

To the best of our knowledge, the last step is often overlooked
because of the lack of generic methods and tools to perform it
easily and efficiently on production applications. With this paper,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions @acm.org.

CONF ’yy, Month d—d, 20yy, City, ST, Country.

Copyright © 20yy ACM 978-1-nnnn-nnnn-n/yy/mm. .. $15.00.
http://dx.doi.org/10.1145/nnnnnnn.nnnnnnn

we would like to remedy this by presenting a novel approach to
perform value profiling:

e We present an approach to perform value profiling based on bi-
nary patching: our solution takes production binary programs as
input and patch them. Hence it does not require any modifica-
tion of the source code nor any compilation and is very easy to
use (Section 2). This approach allows us to profile applications
with only a minimal impact while solutions that require modi-
fications in the source code may lead the compiler to produce
very altered binaries (e.g. different register allocation, inlining,
etc.). Moreover, our solution is language agnostic and has been
tested successfully with C, C++ and Fortran applications.

We show that this approach can be applied to profile loops. In
particular we give details on how to use it to retrieve the num-
ber of iterations and the number of cycles spent in a loop. We
present an optimization that improves the accuracy of the mea-
sure of cycles spent in a loop in some cases and that improves
over value profiling as performed in some production compilers
(Section 3.3).

We show that it is possible to know exactly how many times
a path between two binary basic blocks is taken and that this
information can be used to simplify static control-flow analysis
or to optimize code: we can trim off paths that are seldom or
never taken in the control-flow graph (Section 3.4).

We show how to profile function calls (Section 3.5). This is
particularly useful for function calls that are heavily used and
that are quite expensive (e.g. calls to mathematical functions
such as exp, cos, sin) We show how to retrieve call parameters
and return values in a generic way (i.e. for almost any function,
not only mathematical ones) and we show how these values
can be used to implement specialization and/or memoization
optimizations.

We provide a tool that implements the proposed methods. It
allowed us to apply them to production applications. A lot of
effort have been put in it to ensure support for multi-threaded
and distributed applications (OpenMP, MPI, etc.) and to design
an interface as simple to use as possible.

This work is part of the effort to build a coherent tool suite
called MAQAO which already provides: binary patching with
MADRAS [11, 12]; hot spot identification with LPROF'; static

! This tool will be fully described in an upcoming paper. Basically, it uses
several ways to detect hot spots in applications: hardware performance
counters, different sampling methods with or without binary patching, etc.

Iterations Cycles Cycles/iteration
Total 94778586 | 3940196418 N/A
Min 3 40 13.33
Max 3 67168 22389.33
Average 3.00 124.72 41.57

Table 1. Simple statistics for a loop

binary analysis with CQA [4]; loop performance issue characteri-
zation with DECAN [7]; value profiling with VPROF (this paper).

2. Overview

To set the scene for this paper, in this section we give motivating
examples of issues that can be encountered during the optimization
of applications — we actually faced them and they drove the devel-
opment of the value profiling methods described in the following
sections of this paper. We briefly present the interface to use our
tool to show that the presented method can be made easily acces-
sible through a simple interface. The interested reader, however, is
encouraged to read the user manual of our tool for a more com-
prehensive description of the available options not relevant to this
paper and that have been left out.

2.1 Profiling loops

Suppose we have profiled an application (for instance in our case
with MAQAO LPROF) and detected that a lot of time is spent
in a given loop with the identifier 4155. We can use our tool to
characterize it a little bit more:

magao vprof ./prog loop-id=4155

This produces and executes a patched binary into which the
loop identified with the identifier 4155 is profiled (instrumentation
details are discussed in Section 3.3). The measured values are
computed and stored in different ways, depending on the selected
options, and finally written in a file which is used to produce
reports.

For instance, with the previous command our tool reports that
we entered the loop 31592862 times. It is what we call the number
of instances. Simple statistics about the loop are reported too as
shown in Table 1. We can already see that the number of iterations
per instance is very low and constant (equal to 3). This can be used
as a hint for the compiler to unroll, vectorize or specialize the loop.

The number of cycles varies a lot and our tool also reports a
distribution of the instances per their average iteration cost (aver-
age number of cycles per iteration) as shown in Figure 1. Instances
are clustered into bins with logarithmic bounds and a few instance
numbers (not represented) are reported for each bin. These instance
numbers can be used by other tools (e.g. MAQAO DECAN) to
characterize some instances more precisely. For instance to detect
the origin of the additional cost of the most cycle expensive in-
stances (e.g. cache issues, etc.).

Our tool can also report more detailed statistics:

maqao vprof ./prog loop-id=4155 \
--report-mode=full-stats

The instrumentation, however, is more expensive because we
need to store on disk the number of iterations and the number of
cycles for all loop instances. Each stored number uses 8 bytes of
memory, hence for the given example with 31592862 instances
for which we store both cycles and iteration count, the required
disk space is 482MB. Results are shown in Table 2. Q1 and Q3
respectively represent the first and the third quartiles; D1 and D9
respectively represent the first and the ninth deciles.

Iterations | Cycles | Cycles/iteration
Std dev 0.00 121.61 40.54
Median 3.00 67.00 22.33
Q1 3 59 19.67
Q3 3 97 32.33
D1 3 59 19.67
D9 3 303 101.00

Table 2. Full statistics for a loop

values Freq FreqPercent
[1,] -0.120782 7346 18.2282878

[2,] -24.25 124 0.3076923
[3,] -28.75 120 0.2977667
[4,] -26.125 120 0.2977667
[5,] -25.75 120 0.2977667
[6,] -33.625 112 0.2779156
[7,] -29.25 112 0.2779156
[8,] -27.625 104 0.2580645
[9,] -23.125 104 0.2580645
[10,] -18.25 100 0.2481390
[11,] —-40.75 96 0.2382134
[12,] -39.25 96 0.2382134
[13,] -33.75 96 0.2382134
[14,] -33.25 96 0.2382134
[15,] -31.75 96 0.2382134
[16,] -23.625 96 0.2382134
[17,] -20.125 96 0.2382134
[18,] -36.25 88 0.2183623
[19,] -32.625 88 0.2183623
[20,] -30.625 88 0.2183623

Table 3. First 20 values for exp parameter sorted by decreasing
frequency

Some loops have complex control flow and are hard to analyze
statically and hard to optimize. To help reduce the complexity,
we can measure how many times an edge between two blocks is
traversed during the execution of the program:

maqao vprof ./prog loop-id=8775 \
--enable-loop-paths

Figure 2 shows an example of the result on the second hottest
loop of a production application which has an interesting control
flow. We see that we can trim off a branch which is never taken
with the tested dataset. We also know which basic blocks should be
optimized in priority because most paths traverse them.

2.2 Profiling function calls

Our team had to optimize a production application whose profiling
report showed that a lot of time was spent in calls to the libc
exponential function (exp). We used our tool to profile the calling
parameters:

maqao vprof ./prog \
--calls="double exp(double x);"

Profiling revealed that there were 22722 calls to the function but
only 403 different input values. Table 3 presents the first twenty
most occurring parameters. We can see that exp is called with
the same parameter more than 18% of the time. Moreover, the
successive calls seem to follow a pattern as can be seen in Figure 3.

To optimize the application, we could:

e change the source code to avoid these redundant calls. In the
end, the application was optimized with this method as it was a
trivial change to make after it had been detected.

Cycles/iteration ranges
80
60

40 F

20

0

m——
0.0-2.0 4.0-8.0 16.0-32.0 64.0-128.0 256.0-512.0
Il %instances [% cycles

1024.0-2048.0

Figure 1. Instance distribution per average iteration cost (in cycles)

P73616666

66940

\ 18807732
\
N

66938
w SN & 3717146101306

;o
/
01306

66937

\

73616665‘\982
X
66942

66943

Figure 2. Loop paths example. The shape of each block depends on the number of predecessors and successors. Bold plain edges indicate

natural flow (i.e. next instruction); light plain edges indicate unconditional jumps; dashed edges indicate conditional jumps. Numbers
annotating each edge indicate the measured number of times each edge is traversed during the whole execution of the program.

-20

s
8>
%%E&
2 B oo WY
S gm0 000 @O
g 3 = o ope St B ope 9 S ow OB =
E > % 5w B B s >3 a8 8
e - EZC R EEE s 5 5 3 2 0, .o
@0 000 o e @0
® 2 = o = F o ® ® & @ -« @
® B o oo gy B - - @ 8 - ®
® L] e B @ g ?gg o @ & ® - °
- s 2 o B o & cao e . - -
. . s 2 22X Tz . . - ° . e
. . s =y TEE a - . .
2 ° o s B = o 0 o MR o > = . - o °
T ° o s 8 & Boewpepe E 8 8 - o
L4 o oo RS W8S ocoo o °
° e B & B awae B & 8 o °
o el .
s © B 2 HE 8 B o °
s s cE®ggB e o
. o s g g ® o ,
e o & & = o
(=]
ula— o o e o
o o
T T T T T
0 5000 10000 15000 20000

Index

Figure 3. Values of the exp parameter for the successive 22722 calls. Only 403 different parameter values are used and we can observe a
pattern. The almost straight “line” on top represents the most occurring parameter which is used for 18% of the calls (cf Table 3).

e specialize the call to exp in order to hardcode the most occur-
ring value(s)

e use memoization for a certain number of parameter/result cou-
ples for the exp function

Memoization is useful to avoid hard coding some values into the
code as it is the case with specialization. The idea is to have a cache
of some previous parameter/result couples and to avoid calling a
costly function if we can get the result from the cache (in this case
we have a “cache hit”). The major advantage is that performance
can be improved for different datasets if the call pattern stays the
same even if calls are made with different values for each dataset.

To use memoization, we need to know how many parame-
ter/result couples to store (in a hash table for instance). In Figure 4
we plot the distance (in number of calls to exp) between calls with
the same parameter for the first twenty most occurring parameters:

e the dotted ranges indicate the full range of distances (e.g. for
the second value, the distance between two successive identical
calls ranges from about 15 to about 2000 calls).

e the box indicates the quartiles: the bottom of the box is the first
quartile and the top of the box is the third quartile

e the horizontal line in the box represents the median

If we use a cache of the last 250 parameter/result couples for
the exp function, we see that we will have a cache hit rate above
75% for 18 of the 20 most frequent values (cf the horizontal line in
Figure 4).

Similarly, in the same program log was called 14691 times
from two call sites with only 2 different values (one per call site).
We used the binary patching method to replace calls to log and to

exp always performed with the same parameter with a simple load
of the correct value from memory to a register.

3.

Patching binary programs is hard. Hence our tool relies on the
MADRAS component [11, 12] of the MAQAO tool suite to do it.
MADRAS can insert instructions into a program at almost arbitrary
places and takes care of disassembling the original program, mov-
ing basic blocks, modifying relocation tables and assembling the
final program.

MADRAS allows the insertion of new global variables and new
thread-local storage (TLS) variables into programs (the latter has
been developed in the context of this work to make our tool support
multi-threaded applications). We use these features to add variables
for the various data structures we need that contain counters, file
handles, etc.

Describing exactly how MADRAS work is out of the scope of
this paper. Interested readers are invited to read Cédric Valensi’s
thesis [11] or this older technical report [12]. A new paper present-
ing recent developments is expected soon.

Instrumentation details

3.1 Instruction insertion

The main issue with binary program instrumentation is to keep the
original semantics of the program and to be as close as possible to
the original performance, especially when we measure cycles if we
want our measures to be meaningful.

To keep the original semantics of the program, the code we
insert must not change the values of the registers and memory used
by the program. One way to do that is to save the registers our code
use before their use and to restore them afterwards. Now the issue
is to find a location where to store registers.

!
i
i

500
1

Distance between successive values

20
1

10
1

T P

T T T T T T T T T
1 2 3 4 5 6 7 8 9

T
10

T T T T T T T T T T
11 12 13 14 15 16 17 18 19 20

Most frequent values (up to 20)

Figure 4. Periodicity of the most frequent values

Hopefully most languages used in high-performance computing
(i.e. C, Fortran, C++) use the stack in the same manner: to store lo-
cal variables and to pass parameters for function calls. If we move
the stack pointer after the local variables of the function we are in-
serting code into (and after its red zone on x86-64 architectures [1]),
we have an already allocated memory space that we can use without
perturbing the program execution.

To insert some instructions in a program on the x84-64 archi-
tecture, we use the pattern shown in Figure 5 to store and restore
the context (i.e. to avoid altering the program semantics). The code
to align the stack before the call to fxsave and to store the old po-
sition has been left out for clarity. Some of the instructions used in
this pattern are very costly and our objective is to remove those that
are not strictly necessary.

A possible approach is to use a live registers analysis to detect
registers that are alive at the address of the insertion: registers that
are not alive can be used without being saved. To illustrate this,
suppose we are inserting some code before the instruction xor
%rax, %rax, then we can use the %rax register freely because it
will be written before being read again in the following code.

Registers that are not used by the inserted instructions don’t
have to be stored either. This method is used to insert instructions to
measure cycles in Section 3.2. Similarly if the inserted instructions
don’t modify flags or if the modified flags are not "live” (i.e. they
are written before being read by the following instructions), then
we can avoid saving and restoring them with the costly pushfq and
popfq instructions. Finally, if we don’t have to store any register
nor the flags register, then we can avoid moving the stack pointer.
This method is used to insert the iteration counter in Section 3.3.

3.2 Counting cycles

Measuring the number of cycles spent in a code on the x86-64
architecture is described in an Intel white-paper [9]. rdtsc and

rdtscp instructions are used. These instructions return their result
in the RAX and RDX registers and modify the flags. Figure 6 shows
how they are inserted into a binary with their surrounding context
saving instructions.

Our tool provides an option to use serializing instructions to
avoid counting out-of-order instructions fetched before the start
counter or fetched in advance after the stop counter. We use the
cpuid instruction (cf Intel’s white paper) and we save and restore
RBX and RCX registers accordingly.

Our measure of the cycles includes cycles spent for instructions
that are not in the original program but are used to save and restore
the context and to store the result of rdtsc. As this cost is almost
constant, our tool inserts some code to evaluate the minimal cost
in cycles of these extraneous instructions at the beginning of the
program and subtracts this value from the further measured values.

3.3 Counting iterations

Counting the number of iterations must be as cheaper as possible,
especially when we measure the number of cycles spent in the loop
at the same time: the reported time includes the cost of the iteration
counter code. Our tool proposes a mode where the two measures are
performed separately (i.e. the application is patched and executed
twice). This approach, however, is limited because to be able to
associate cycles measures and iterations measures, it requires that
the application has a deterministic behavior. In particular, multi-
thread and multi-process applications are not supported with this
mode because the thread/process numbers are not deterministically
assigned.

The first step to count the number of iterations of a loop is to
identify the loop pattern. MAQAO uses a variant of the algorithm
from [14] to identify loops at the binary level, hence it is not always
clear what an iteration is: some loops have several entries, several

lea rsp, [rsp - 0x200] ; skip red zone

pushfq ; push flags register
push ... ; push registers
fxsave [rsp] ; save vector registers

; inserted instructions

fxrstor [rsp] ; restore vector registers

pop ... ; pop registers

popfq ; pop flags register

lea rsp, [rsp + 0x200] ; restore original stack
pointer

lea rsp, [rsp - 0x200]
pushfq

push rax

push rdx

rdtsc

sal rdx, 0x20

or rax, rdx

mov [rip - 0x3d9], rax

pop rdx

pop rax

popfq

lea rsp, [rsp + 0x200]

Figure 5. Generic instruction insertion pattern on x86-64 architec-

ture
Mode | cycles/iteration
Original loop (without iteration counter) 90
With iteration counter in memory 131
With iteration counter in a register 90

Table 4. Measured cycles/iteration to show the effect of the opti-
mization against the 4K aliasing issue

exits and several back edges (i.e. edges that goes to a potentially
already visited block in the control flow).

Hopefully, in most cases loops have a single entry block and
a single exit block and we can easily identify where to insert the
iteration counter incrementation code. In the worst case — which is
also the least common — we cannot do that and we insert the code
on every back edge.

On x86-64 architectures, the inc instruction can be used to
increase the value in a register or at a memory address. This in-
struction modifies some flags hence the first optimization we im-
plemented was to find an instruction of the original code that sets
or leaves undefined the same flags. Moreover the instruction has
to be executed in each iteration of the loop. If we find such an in-
struction, we add the inc instruction before it without saving any
register nor the flags register.

The inc instruction performs three micro-operations: load, add,
store. When the source/target is a memory address, as the address
is always the same during the whole execution of the loop, the
instruction is subject to a store forwarding stall issue (also known as
4K aliasing [5]). Basically, the memory accesses are serialized and
the performance drops, leading to overly increased cycle measures.

Our tool uses an optimization to avoid this issue in some cases.
It tries to detect a general purpose register that is not used in the
loop and it uses it to store the iteration counter. If it cannot find
any, it falls back to storing it in memory. Before the loop, the value
in the register is saved and the register is set to 0; after the loop,
the value in the register (the number of iterations) is saved and
the original value of the register is restored. The is implemented
with two calls to the xchg instruction with the selected register
and the memory location for the counter as parameters. Figure 4
shows the results we obtained without and with this optimization
on a specific case that was at the origin of this optimization. We
can see that this optimization is very effective as it makes the cost
of the iteration counter code disappear: the avoidance of the 4K
aliasing issue keeps the original out-of-order execution behavior of
the code.

Figure 6. Example of inserted instructions to measure cycles spent
in a loop on x86-64 architecture (this is only the first insertion
before the loop)

3.4 Tracing paths

Tracing control-flow paths in a loop or in any set of basic blocks is
very similar to the instrumentation to count iterations. The differ-
ence is that there is a counter for each couple of successive blocks
and that counters are never reseted. We insert counter incrementa-
tion code for each counter at appropriate locations.

Similarly to the iteration counter, if the flags register is not
“alive” at the beginning of the target basic block, we can avoid
storing and restoring it.

The resulting file uses three 8-byte words per couple of blocks
to store the two block identifiers and the measured value. It is then
easy to trace annotated control-flow graphs as in Figure 2.

This method can be very expensive and must be used only
on pathological cases. As an alternative, loops with too many
blocks/instances/iterations that cannot reasonably use this method
can use a statistical sampling approach as provided by MAQAO
LPROF to determine loop hot paths.

3.5 Function call parameters

Function call instruction consists in inserting instructions before
and after a call instruction targeting the function we are interested
in. The location of call parameters and returned values is fully
described in [1] for the x86-64 architecture. As long as the called
function respects the calling convention described in the document,
we know which registers or stack location to read.

By using the method to insert instructions described in Sec-
tion 3.1 without any optimization to reduce the number of saved
registers, we know the location of saved register values on the stack,
we read the appropriate ones to retrieve the call parameters and the
returned values and we store them in a file. Finally, with these files
we can compute statistics and generate graphs as presented in Sec-
tion 2.2.

To provide a simple interface, our tool parses the given func-
tion declarations in C (e.g. ”double log(double x)”), automatically
infers where to read parameters (registers, stack, etc.) and uses the
parameter names in the output reports. This makes it very conve-
nient for users of the tool because they don’t need to be aware of
the calling conventions and it ensures that when our tool will be
ported to other architectures, it will keep the same interface: only
the application binary interface (ABI) used internally will change.

4. Related works

As far as we know, the term “Value profiling” has been coined in
1997 by Brad Calder et al. [2]. Futher experiments performed on

Alpha architectures showed that up to 21% execution time speedup
could be obtained by using value profiling and specialization [3].
These experiments used the generic ATOM framework [10] to
perform binary instrumentation at link time on Alpha architectures.

Watterson et al. [13] built on this work in the context of the
alto [8] link-time optimizer (still on Alpha architectures). The idea
was to filter the results of the value profiler depending on their
expected use in the following optimization passes in order to reduce
the memory consumption and to speed-up the value profiling phase.
Even if memory is a lot cheaper these days, this optimization is
interesting and our tool combined with an optimizer could also use
it. Our tool already provides several options to precisely select what
has to be profiled and which methods to use so that cheap profiling
can be applied broadly to reduce the exploration space while costly
methods which require lot of memory (e.g. returning the number
of iterations and the number of cycles for all instances) can be
reserved to a restricted set of pathological cases.

Khan [6] showed that specialization guided by value profiling
could lead to performance gains: he reports an average 3% gain
with the SPEC 2000 benchmarks? on the Itanium-II architecture
which was better than the results obtained with the Intel C Compiler
at the time.

The GNU C Compiler (GCC) and compatible compilers such as
Intel compilers support basic function call instrumentation with the
--instrument-function parameters. The major drawback of the
compiler approach is that it requires a recompilation of the program
while our approach directly patches the binary program. Moreover,
to the best of our knowledge the user cannot select the functions to
instrument, nor dump the function parameters and returned values.

Intel Fortran compiler (IFORT) supports value profiling for
loops. At the time of writing, however, the latest version (16.0)
is still subject to the 4K aliasing issue presented in Section 3.3. We
don’t think there is any obstacle to implement the optimization we
present in this paper in a future version of their compiler though.

5. Conclusion

We have presented a way to easily perform value profiling on pro-
grams. The focus has been put on loops and function calls because
they are at the core of high-performance scientific programs but
could be extended to work with other aspects (I/O, etc.).

The method we presented performs binary patching. Hence it is
applicable to programs written in different languages, it does not
require any modification of the compilation chain and it does not
require programs to be recompiled explicitly for value profiling.
Moreover, this technique ensures that we profile exactly the code
that is generated by the compiler without the profiling probes.

We showed that we have been able to optimize the method to
measure the loop iteration count to the point it becomes cycle-
wise unobservable in some cases while even production compilers
performing value profiling are still subject to highly penalizing
store-forwarding issues in the same context.

We briefly presented the implementation and the user interface
of a tool called VPROF which is integrated into the MAQAO tool
suite®. It shows that the proposed method is made easy to use
through a simple interface. This supports our claim that value pro-
filing should be generalized as a diagnostic method because the
potential optimization opportunities compared to the difficulty and
cost (time, resources, etc.) to use the method is very favorable. We
only described a few options of our tool relevant for this paper.
Interested readers should refer to the user manual for a comprehen-
sive description of the options.

2 www.spec.org

3 www.maqao.org

Our tool provides support for multi-threaded and distributed
applications (OpenMP, MPI, etc.). It presented some challenges
because the inserted profiling code had to be able to use thread-
local storage (TLS) variables and to be able to produce reports from
several potentially big trace files. A lot of efforts have been put in
the development of our tool and the MAQAO tools it depends on to
make this possible.

Some tools of the suite — such as DECAN, the loop instance
performance issue characterizer, or CQA, the static binary code an-
alyzer — already use VPROF to identify interesting loops/functions
and to trim off unused control-flow paths during loop analysis.
Hence our tool is already well integrated and has been tested in
multiple settings.

5.1 Further work

Future research includes automatically using profiling information
returned with our method. Profile guided optimization (PGO) is a
well-known technique worth exploring at the compiler level. An-
other more original approach would be to use binary patching to
improve performance. For instance by adding memoization and/or
specialization to a program automatically. To the best of our knowl-
edge, this would be the first time such optimization would be per-
formed using an automatic language agnostic method.

The current implementation is limited to x86-64 architectures
(with SSE and AVX vector extensions). We would like to experi-
ment with some of the techniques presented here on other architec-
tures with different instruction sets (e.g. ARM).

References

[1] System V Application Binary Interface 0.99, 2013. URL
www.x86-64.org.

[2] B. Calder, P. Feller, and A. Eustace. Value profiling. In Microarchitec-
ture, 1997. Proceedings., Thirtieth Annual IEEE/ACM International
Symposium on, pages 259-269. IEEE, 1997.

[3] B. Calder, P. Feller, A. Eustace, et al. Value profiling and optimization.
Journal of Instruction Level Parallelism, 1(1):1-6, 1999.

[4] A. S. Charif-Rubial, E. Oseret, J. Noudohouenou, W. Jalby, and
G. Lartigue. Cqa: A code quality analyzer tool at binary level. In High
Performance Computing (HiPC), 2014 21st International Conference
on, 2014.

[5]1 A. Fog. The microarchitecture of Intel, AMD and VIA CPUs/An
optimization guide for assembly programmers and compiler makers,
2014.

[6] M. A. Khan. Improving performance through deep value profiling
and specialization with code transformation. Computer Languages,
Systems & Structures, 37(4):193-203, 2011.

[71 S. Koliai, Z. Bendifallah, M. Tribalat, C. Valensi, J.-T. Acquaviva, and
W. Jalby. Quantifying performance bottleneck cost through differen-
tial analysis. In Proceedings of the 27th international ACM confer-
ence on International conference on supercomputing, pages 263-272.
ACM, 2013.

[8] R. Muth. Alto: A platform for object code modification. PhD thesis,
UNIVERSITY OF ARIZONA, 1999.

[9] G. Paolini. How to Benchmark Code Execution Times on Intel IA-32
and IA-64 Instruction Set Architectures. Technical report.

[10] A. Srivastava and A. Eustace. ATOM: a system for building cus-
tomized program analysis tools. In SIGPLAN Conference on Program-
ming Language Design and Implementation, pages 196-205, 1994.

[11] C. Valensi. A generic approach to the definition of low-level compo-
nents for multi-architecture binary analysis. PhD thesis, 2014.

[12] C. Valensi and D. Barthou. Madras: Multi-architecture binary rewrit-
ing tool. Technical report.

[13] S. Watterson and S. Debray. Goal-directed value profiling. In Com-
piler Construction, pages 319-333. Springer, 2001.

[14] T. Wei, J. Mao, W. Zou, and Y. Chen. A new algorithm for identifying
loops in decompilation. In Static Analysis, pages 170-183. Springer,
2007.

