
Modularizing GHC
Version 1.0

Sylvain Henry
∗
, John Ericson

†
, Jeffrey M. Young

‡

2022-05-03

1 Abstract

GHC is the de factomain implementation of the Haskell program-

ming language. Over its 30 year history it has servedwell the needs

of pure functional programmers and researchers alike. However,

GHC is not exemplary of good large scale system design in a

pure function language. Rather ironically, it violates the properties

that draw people to functional programming in the first place:

immutability, modularity, and composability. These scars have

become more noticeable as modern projects currently underway,

such as the Haskell Language Server and cross-compilation, aim

to fulfill user needs and desires far more diverse than before.

We believe a better GHC is possible. We write this paper to

properly situate both the current state of GHC’s codebase and

that better future state in the design space of large scale, pure,

functional systems. Firstly, we document in detail, GHC’s archi-

tectural problems, such as low coherence and high coupling of

mutable state, and their genesis. Secondly, we describe what we

believe to be a superior design, drawing heavily on domain-driven

design principles. Lastly, we sketch a plan to get this design imple-

mented iteratively and durably, mentioning interactions with other

ongoing refactorings (structured errors, Trees That Grow, etc.).

All of this is informed not just by our own experience working

on GHC and deep dives into its history, but also by the traditional

software engineering literature. The paper is written from an

engineering perspective, with the hope that our collection and

recapitulation may provide insight into future best practices for

other pure functional software engineers.

∗
IOG – sylvain.henry@iohk.io – sylvain@haskus.fr

†
Obsidian Systems – john.ericson@obsidian.systems – inquire@johnericson.me

‡
IOG – jeffrey.young@iohk.io

2 Introduction

GHC is a venerable project started three decades ago that has been

mainly designed as a compiler program for the Haskell language of

the time. As such and similarly to other compilers (e.g. GCC), it can

be modelled as a black box—configured with some command-line

parameters—that transforms Haskell source files into object code:

*.hs *.o

Parameters

GHC

GHC is written in Haskell, with most of its code residing in a

Haskell library (ghc-lib
∗
). This design is common in the Haskell

world as it allows the library to be reused for other purposes by

other clients—which is exactly what happened to GHC too. A

more precise representation is thus:

*.hs *.o

Parameters

GHC
program

GHC
library

uses

GHC extensions The Haskell language and some of its libraries

are defined in the Haskell 98 [1] and Haskell 2010 [2] reports. GHC,

however, provides many additional extensions to these languages

and new extensions are still regularly proposed and implemented

(especially via the ghc-proposals process
†
).

Furthermore, these extensions are very commonly used, so much

so that any tool wanting to provide support for modern Haskell

programs would have to follow GHC’s development closely and

reimplement its extensions. This is a lot of work! Thus, in practice,

several tools directly use theGHC library (ghc-lib) instead.GHC has
not only become the de facto Haskell compiler but also the de facto Haskell
framework used by other tools to manipulate Haskell programs. For
example, this is the case for: documentation generators (haddock),

interactive REPL (ghci), linters (hlint), IDEs (haskell-language-

server), cross-compilers (GHCJS, Asterius, Eta...), documentation

example tester (doctest), etc.

The need for modularity Being written in Haskell, one would

hope that ghc-lib would be modular and composable as functional

programs tend to be. Disappointingly it is far from it. GHC has

∗ https://hackage.haskell.org/package/ghc-lib
† https://github.com/ghc-proposals/ghc-proposals

2

https://hackage.haskell.org/package/ghc-lib
https://github.com/ghc-proposals/ghc-proposals

evolved quite a lot over time and, in our opinion, many new

features have been force-fitted into the existing code without

proper redesign. The resulting ghc-lib is difficult to understand, to

use, and to modify, and also fragile (a.k.a. buggy). In Section 3 we

describe some of the major deficiencies we are aware of.

While the current design isn’t glorious, it works, so we could be

tempted to follow the “if it ain’t broke, don’t fix it” motto. But as

we alluded to above, there is now a proliferation of clients which

depend on ghc-lib, and some of themhave vastly different use cases

and requirements compared to the GHC program. For example,

consider the requirement distance between the GHC program

and an IDE. The GHC program is typically used to execute the

whole pipeline (from parsing to native code generation) on a

batch of modules while, on the other end of the spectrum, an IDE

executes only the frontend (parser, type-checker) possibly after

every user keystroke in the code editor: these two use cases have

many opposite concerns (one-shot vs long-running session, latency

impact, cleanly interruptible or not, etc.).

A common use case of the ghc-lib is to develop Haskell cross-

compilers, such as, compiling Haskell programs to JavaScript,

WebAssembly, JVMbytecode etc.Most cross-compilers (e.g.GHCJS,

Asterius, Eta) have been built upon GHC forks because they need

to hack around some deficiencies in the stock library. However, “The GHC API was used ini-

tially, but the rigidity of the API

forced me to inline the entire GHC

frontend into the GHCVM [Eta]

codebase.”—abstract of Rahul Mut-

tineni’s HIW2016 talk

as mentioned above, it is a lot of work to keep up with GHC’s

development pace and indeed these forks lag behind upstream

GHC. Amuch more sustainable approach would be to fix the GHC

library itself in order to make it more modular and composable, as

required by these other compilers.

Redesigning GHC? Changing GHC’s design after so many years

seems like a daunting task as the codebase is huge. Table 1 shows

the number of lines of Haskell code in ghc-lib at the time of writing.

But those numbers don’t show how everything is badly entangled.

A slightly better metric is the number of transitive module depen-

dencies. For example, the Parser “component”, which we have

been trying to untangle from the rest of the compiler for quite some

time now, still depends on 275 modules out of the 593 modules in

the GHC library.
‡

On the bright side, GHC is written in Haskell, and this language

is particularly well suited to performing massive refactorings with

confidence that nothing breaks. Thus, it should be possible to

refactor the GHC library towards a more robust and versatile

design.

The question becomes: what is the design we are aiming at?

‡
See the test called CountDepsParser in GHC’s testsuite and ghc-lib-parser package

(https://hackage.haskell.org/package/ghc-lib-parser)

3

https://hackage.haskell.org/package/ghc-lib-parser

Language files blank comment code

Haskell 593 65539 136186 214047

Table 1: Haskell code in the GHC

library

GHC being a vehicle for research, we don’t believe it can reach a

fixed point where we would consider it complete/done. Instead, it

must stay easy to refactor in order to easily experiment with new

ideas. It must stay modular to allow its components to be reused

at all, but especially in unanticipated ways. As such, its design is

best described as a set of principles.

Our contributions:
I We first present some design flaws in GHC as well as their

genesis (Section 3). An alternative title could be “what’s so

bad about GHC’s design and API, and how did we get there

in the first place”. It motivates the need for changes. We also

hope there are some lessons to be learned about iterative

software development over long periods of time.

I Thenwepresent designprinciples thatwewant to see applied

to GHC (Section 4). These principles aren’t novel: they come

from Domain-Driven Design and have already proved their

effectiveness in other programming circles, especially the

object-oriented programming community. Our contribution

is to present them to an unfamiliar audience by exposing the

effects of their application to GHC.

I The proposed changes are invasive and are too numerous

to be done all at once. As a consequence, it is necessary to

find changes that can be done independently of the other

ones. This can be tricky. We give some insights about the

method to follow to implement the changes more effectively

(Section 5). We also present relations with other ongoing

refactorings (structured errors, Trees That Grow, etc.).

Cross-referencing anecdotes Our journey began in earnest with

Sylvain wanting to use and to document GHC’s internals but

being unable to precisely refer to internal components because

components had no boundaries. In particular there was no module

hierarchy, so that what he decided to fix first, later to be followed

by refactoring of the contents of the modules themselves. This

proved harder than it sounds, because we didn’t realize the full

extent to which GHC was entangled with itself.

After some years doing this, Sylvain found Eric Evans’s book

“Domain-Driven Design: Tackling Complexity in the Heart of

Software” [3] which was recommended by Sebastian von Conrad

in an unrelated talk about Event Sourcing
1
. Unexpectedly it proved 1: Go Back to the Future with Event

Sourcing and CQRS
to be a very good resource, describing many issues which matched

4

https://youtu.be/iGt0DBOWDTs
https://youtu.be/iGt0DBOWDTs

our experience of GHC, along with remedies that matched our

thoughts on what we wanted to do instead.

Yes, theHaskell communityhas longbeendismiss of the tradition

software engineering literature, due to it’s overlap with the Object-

Oriented Programming community. We don’t dispute that famous

texts like “Design Patterns” are infamous in these parts for taking

a seemingly uncritical lens to OOP language features, putting the

means before the ends. But zooming out of the language-specific

advise, many of the basic precepts still hold up.

It’s those parts of “Domain-Driven Design” [3] that we want to

emphasize here, for when FP and OOP instincts agree, we have

a fairly diverse consensus that something is wrong or something

would be better. Many of GHC’s issues have occurred in some

part because GHC developers more often than not tend to spend

a huge portion of their time working on GHC rather than other

codebases. We want to go out of our way in avoiding the myopia

of a single project, and by grounding our analysis in the work of a

very different community, we hope we’ve achieved that.

“Domain-driven design” is a fine phrase for what we propose

GHC ought to do, and so we pick up its mantle.

3 Some design defects in GHC

As far aswe can tell, the current designof ghc-lib is the result of force

fitting changes for three decades into the original simple model.

Many changes have been implemented in what was considered the

least disruptive way possible to keep the existingmodel untouched.

But the model was touched and the end results are: (1) Code that

doesn’t reflect what the real model is. (2) People who continue to

think that the old model is still relevant.

In this section we present some of the major flaws of ghc-lib

in our opinion. Note that these flaws are purely about software
engineering concerns.We don’t comment on anything research related
(e.g. “System XYZ should be used instead of System FC”).

3.1 Shotgun parsing

GHC is particularly subject to a programming antipattern called

“shotgun parsing”. This antipattern is defined in [4] as:

Shotgunparsing is aprogrammingantipatternwhereby

parsing and input-validating code is mixed with and

spread across processing code—throwing a cloud of

checks at the input, and hoping, without any system-

atic justification, that one or another would catch all

the “bad” cases.

5

Listing 1: Note about representation

of module holes

1 Note [Representation of module/name variables]
2 ~~
3 In our ICFP’16, we use <A> to represent module holes, and {A.T}
4 to represent name holes. This could have been represented by
5 adding some new cases to the core data types, but this would have
6 made the existing ’moduleName’ and ’moduleUnit’ partial, which
7 would have required a lot of modifications to existing code.
8

9 Instead, we use a fake "hole" unit:
10

11 <A> ===> hole:A
12 {A.T} ===> hole:A.T
13

14 This encoding is quite convenient, but it is also a bit dangerous
15 too, because if you have a ’hole:A’ you need to know if it’s
16 actually a ’Module’ or just a module stored in a ’Name’; these two
17 cases must be treated differently when doing substitutions.
18 ’renameHoleModule’ and ’renameHoleUnit’ assume they are NOT
19 operating on a ’Name’; ’NameShape’ handles name substitutions
20 exclusively.

For instance, when new features are added into GHC, they some-

times extend or refine existing objects of the model (e.g. “Module”,

“Package”, “Name”, etc.). Instead of clearly representing the new

objects (or variants of existing objects) in the code with novel

constructors and types, which could require pervasive refactoring,

old model objects are often kept in place but done so by modifying

of what they represent.

A concrete example, which we have direct experience with, is

Backpack. Since Backpack, package components (libraries, exe-

cutables) may have module holes that can be instantiated with

other modules. The representation of module holes in the code is

documented in the Note reproduced in Listing 1.

To avoid modifying too much code by representing real modules

and module holes differently, it was preferred to keep the existing

Module datatype unmodified. Except that now we have to be careful

every time we use a Module as it may be a hole: the name remained

while the concept changed.

This is a perfect example of a change that induces “shotgun

parsing”. It is also antithetical to the “parse, don’t validate” slogan

of type-drivendesign [5]: after this change, every function receiving

a Module as an argument and expecting it not to be a hole must

validate its argument (i.e. check if the module is a hole or not

and react accordingly). The compiler doesn’t help in detecting

where these validations must occur because the same types and

constructors are used.

A typical validation example for a Module argument is shown

in Listing 2. In Listing 2, loadInterface function first validates its

6

Listing 2: Example of a function

validating its Module argument after

Backpack. In this function, the vali-

dation occurs in a guard which calls

the predicate function isHoleModule

—a classic example of the validate,

don’t parse anti-pattern.

1 loadInterface :: SDoc -> Module -> WhereFrom
2 -> IfM lcl (MaybeErr SDoc ModIface)
3 loadInterface doc_str mod from
4 | isHoleModule mod
5 -- Hole modules get special treatment
6 = do hsc_env <- getTopEnv
7 let home_unit = hsc_home_unit hsc_env
8 -- Redo search for our local hole module
9 loadInterface doc_str
10 (mkHomeModule home_unit (moduleName mod))
11 from
12 | otherwise
13 = ...

input module via a guard to react accordingly to the nature of the

module, i.e., whether the module is real or whether it is a hole.

Notice that this behavior is not represented at the type level. If we

removed this validation code the type-signature would stay the

same, but it would likely manifest a runtime failure when trying to

read an interface for a module coming from the fake hole unit.

This is just an example—which in this case happens to be

documented—but it is quite illustrative of GHC’s design decisions.

It results in functions similar to functions written with untyped

languages that have to check the types of their arguments at

runtime to react accordingly. Writing correct code this way with

no help from the compiler to detect unhandled cases is notoriously

difficult and it is saddening to see this kind of code in the flagship

Haskell codebase.

3.2 Command-line flags (DynFlags)

Command-line flags handling is another notorious example of

bad design in GHC. After being parsed and loosely validated,

command-line flags end up into a huge record whose type is

DynFlags. We use “DynFlags” as a singular

or plural noun as it represents “the

DynFlags record/type” but also a

shorter way towrite “command-line

flags”.

The origin of the name comes from 35fb1e38: "CmdLineOpts

now separates flags into static flags and dynamic flags; dynamic

flags will be passed around explicitly and can therefore change

from compilation to compilation." Static flags were passed via

global variables. Note that there are still three of them left at the

time of writing: -dppr-debug, -dno-debug-output, and -fno-state-hack.

3.2.1 Layering Issues

The first code smell is that DynFlags are not confined to the GHC

program, which is the user interface (UI) of GHC—the GHC library
(ghc-lib) is DynFlags-ridden too! Table 2 shows that the number of

7

https://gitlab.haskell.org/ghc/ghc/-/commit/35fb1e382c4561fbd8e1ad66cd515c706e62be41

occurrences of the DynFlags word in the ghc-lib source is quite high

and comparable to the number of occurrences of Id and Var which

are common types that are part of the compiler domain!

GHC version 8.6 8.8 8.10 9.0 9.2

DynFlags 1696 1712 1767 1122 802

Id 1752 1817 1898 2073 2039

Var 1087 1096 1122 1356 1362

XXX obtained with:

grep -r "\<XXX\>" compiler/**/*.hs | wc -l

Table 2: Number of lines with oc-

currences of DynFlags, Id and Var in

ghc-lib. Notice that it started to de-

cline in GHC 9.0 thanks to our work

(more on that in Section 4).

A good code example is the following function to create an Int#

literal in Core syntax (present up to GHC 8.10):

1 -- | Creates a ’Literal’ of type @Int#@

2 mkLitInt :: DynFlags -> Integer -> Literal

Any user of ghc-lib wanting to manipulate Core syntax has to

provide some DynFlags value to create an Int# literal. The underlying

reason is that the size of an Int# depends on the target architecture

(32-bit, 64-bit) and that GHC learns about the target architecture

by reading its settings file whose contents is also stored into the

DynFlags record.

A user of the API may know that in this specific case GHC

only needs information about the target platform, so it could fill

the DynFlags records with garbage values except for the platform

information, but this is an unfriendly user interface.Worse still, this

interface is fragile: As we will see in Section 3.2.5, when DynFlags

went global and led to bugs.

Alternatively the code using this function could itself require its

own client code (if any) to pass a DynFlags argument. And this is

how DynFlags ended up being passed almost everywhere in ghc-lib

without truly knowing which fields of the record were relevant to

the called functions. This is very anti-modular.

3.2.2 Shotgun parsing DynFlags

A natural way to handle DynFlags would be for the “driver” code,

which drives the execution of the compilation pipeline, to parse

them and to react accordingly, that is to call sub-components (type-

checker, renamer, code generator...) with sub-componentssystem

specific options. Unfortunately, that is not the case. The codebase

is written with the assumption that the GHC program is the only

client of the code. Even GHCi is a second-zone client and has to go

through the interface designed for the GHC program.

As another example of “shotgun parsing” (c.f. Section 3.1), most

functions whose behavior depends on command-line flags just

take a DynFlags parameter. These functions then use predicates on

8

the DynFlags argument to adapt their behavior. This is a bad practice

both for the function implementer and from the function caller

point of view.

The caller can’t know which fields of the DynFlags are used by

the callee function without looking at its implementation. In some

cases, the call stack is so deep and indirect that it’s impossible

in practice to understand how the DynFlags end up being used.

One illustrating example that we found during our work is the

following comment:

1 , hscs_iface_dflags :: !DynFlags

2 -- ^ Generate final iface using this DynFlags.

3 --

4 -- FIXME (osa): I don’t understand why this is necessary,

5 -- but I spent almost two days trying to figure this out

6 -- and I couldn’t .. perhaps someone who understands this

7 -- code better will remove this later.

Some DynFlags value had to be stored to be reused later just because

understanding how it was used was too difficult (and it really was)!

We were finally able to fix this but only after several seemingly

unrelated refactorings. C.f. commit c85f4928

Using DynFlags as a function parameter also makes the imple-

mentation of the function itself much more difficult and inherently

unsafe: the number of cases to handle becomes potentially huge

and the compiler can’t help in checking that every possible case has

been correctly handled. To illustrate this, consider the following

foo function:

1 foo :: Bool -> Bool -> T -- exactly 4 cases to handle

2 foo one_shot safe_haskell = ...

Just with its parameter types we know that we only have at most

4 different cases to handle (cardinality of Bool is 2 and 2 × 2 = 4). We use the Bool type to avoid intro-

ducing more custom datatypes even

if it would be better to avoid boolean

blindness here.

Now compare this with the same function but taking a DynFlags

argument and using predicates on it:

1 foo_dflags :: DynFlags -> T -- unknown number of cases to handle

2 foo_dflags dflags = ...

3 ... isOneShot (ghcMode dflags) ...

4 ... safeLanguageOn dflags ...

At the time of writing, DynFlags is a record with 145 fields andmany

of those fields have types with a cardinality greater than 2. For

example one field contains the set of general purpose flags which

is currently isomorphic to 191 booleans, hence has a cardinality of

2
191

.

With somany possible cases we lose the benefits of strong typing:

The pattern-match checker is of no help to ensure that functions

handle all possible cases. These functions become impossible to test

automatically as we can’t generate a small number of arbitrary yet

9

https://gitlab.haskell.org/ghc/ghc/-/commit/c85f4928d4dbb2eb2cf906d08bfe7620d6f04ca5

meaningful DynFlags values to test them. Reusability is reduced, as

other clients must deal with these unfriendly and unsafe function

interfaces.

But the problems do not end at losing pattern-matching, ro-

bust testing, and code reuse. To see why let’s put a function like

foo_dynflags in context.

Listing 3: The well known naive im-

plementation of fib in Haskell2010.

1 -- | Naive implementation of the fibonacci sequence

2 fib :: Int -> Int

3 fib 0 = 0

4 fib 1 = 1

5 fib n = fib (n-1) + fib (n-2)

Listing 3 shows the well known naive implementation of the

Fibonacci sequence in Haskell. Many Haskellers probably viewed

this definitionwith awe at the start of their functional programming

journey, and for good reason! This implementation is readable and

maintainable precisely because: (1) We can argue inductively over

the input even though the input has cardinality 2
32
. (2) From these

cases, the behavior of the function is rigorously defined, and thus

the semantic domain is also rigorously defined. (3) From (1) and

(2), our code becomes readable and understandable because the

larger conceptual problem (implementing the Fibonacci sequence)

has been broken into the composition smaller cases (implementing

the 1 case of the Fibonacci sequence etc.). Lastly, the cognitive load

required to understand the function is reduced because one no

longer needs to lookup the predicate functions, such as isOneShot

(these functions would be isZero and isOne for fib).

Furthermore, observe the asymmetry, and consequently partial

ordering, between foo_dflags and foo. foo_dflags could be imple-

mented by calling foo, because foo_dflags has all the information

required to call foo. For example:

1 foo_dflags :: DynFlags -> T

2 foo_dflags dflags

3 = foo (isOneShot (ghcMode dflags)) (safeLanguageOn dflags)

However, the opposite case is not true. foo could not be imple-

mented by calling foo_dynflags because the domain of foo (i.e.,

Bool -> Bool) does not contain junk1 and thus foo cannot supply the 1: Junk is not used in the mathemat-

ical sense, i.e., we are not saying that

this violates the no-junk property of

some initial algebra, although this

may be related it is not inline with

the engineering perspective we take

throughout this paper. We simply

mean to say DynFlags contains more

information than required to imple-

ment foo.

types required for foo_dynflags.

As we argued earlier in this section, this leads to the proliferation

and coupling of state-like records such as DynFlags. Our recom-

mendation is to design and implement functions with a property
of least privilege2. To be more precise, we argue that given two

2: A corollary to the well known

principle of the same name in the

security community [6].

possible implementations, foo and foo_dynflags, one should prefer

the implementation that is lower in the ordering of information

access, or in other words; choose the implementation with the

smallest domain possible.

10

3.2.3 When immutable becomes mutable

As we have seen, DynFlags has become part of the interface of many

functions. Ignoring the aforementioned issues, one might still take

a DynFlags parameter as input because one might assume that as

the command-line flags passed by the user are constant during a

GHC session, they are part of an immutable global environment

and thus relatively safe.
3

3: This is not true in an interactive

GHCi sessionwhere a usermay pass

more command-line flags interac-

tively, more on that later. . .

Unfortunately, this does not hold true in practice. Our experience

is that some programs ended up needing to call functions which

require DynFlagswith different parameters than those passed by the

user on the command-line.
4
As you might now expect, the least 4: For example to implement

dynamic-too, c.f. Section 3.4.4.
disruptive path was taken: Because there was no information in

the type system separating the command-line constructed DynFlags

from any other, these programs implemented two workarounds.

Either they constructed a novel ad-hoc DynFlags and then passed

this new DynFlags along. Or since it is difficult to create a DynFlags

value from scratch, these programs pushed the responsibility onto

the caller by requiring a DynFlags argument. This DynFlags argument

would then be reused to call other functions, but only after the

required DynFlags fields had been manually altered by the current

function, with no further check of their consistency.

This is how the once-upon-a-time immutable DynFlags became

effectively mutable and used everywhere. Once it contained so

much information and had proliferated across the compiler, nu-

merous functions would mutate the fields according to their needs

and then pass the record along. As more and more functions

implemented this pattern, DynFlags becomes effectively mutable.

There are still some reminiscence of the good old days when it

wasn’t mutable. For example in GHC.Tc.Types we can still read:

1 data Env gbl lcl

2 = Env {

3 env_top :: !HscEnv, -- Top-level stuff that never changes

But the comment is a lie as HscEnv has a DynFlags field that is

modified in several places (see Section 3.3).

3.2.4 Why not make DynFlags implicit?

We have thus far described how an immutable state-like record

proliferated through the compiler and became mutable as the

compiler organically grew. We now provide a case study on an

interesting refactoring which refactored the compiler in a more
stateful, mutable direction.
In 2012 it seemed a good idea to also pass a DynFlags value via C.f. commit 330f1541

the Reader monad used to build every pretty-printed document in

GHC: this is the SDoc type.

11

https://gitlab.haskell.org/ghc/ghc/-/commit/330f1541df7751d7412921ddfd6a7fb28ec4f564

The reason was that DynFlags contains presentation options, for

example should the compiler display uniques or not? However as

DynFlags also happened to contain settings (e.g. the target platform)

and compiler state (e.g. information about loaded packages), these

fields were available to SDoc functions and eventually ended up

being used too.

We can see why this is wrong with an example. SDocs may be

returned as exception messages, but in order to print the message

the client code has to provide some DynFlags value. If this value

doesn’t contain appropriate settings and compiler state (such as,

a different target platform), then instead of printing the expected

message the output may be slightly different, totally wrong, or the

printing process may just crash because of a partial function.

We have spent countless hours ofwork to revert this. For example

we introduced an OutputableP type class for types that need some

context (like the target platform) to be printed, only later finding C.f. commit d06edb8e

that this type class was very similar to the PlatformOutputable type

class that was removed in 2012.

3.2.5 The genesis of a global mutable DynFlags variable

In the previous section, we described how DynFlags slowly became

required even to print an SDoc, and how its presence in the SDoc code

led to more coupling. A subsequent issue was that some programs

printing SDocs didn’t have access to a DynFlags value, which was

now required! In particular some tracing functions were used in

“static” contexts, e.g., to define some CAFs (top-level values).

This was easily solved by making a DynFlags value always avail-

able:

1 commit ab50c9c527d19f4df7ee6742b6d79c855d57c9b8

2 Date: Tue Jun 12 18:52:05 2012 +0100

3

4 Pass DynFlags down to showSDoc

5

6 -- tracingDynFlags is a hack, necessary because we need to be

7 -- able to show SDocs when tracing, but we don’t always have

8 -- DynFlags available. Do not use it if you can help it.

9 -- It will not reflect options set by the commandline flags,

10 -- it may have the wrong target platform, etc. Currently it

11 -- just panics if you try to use it.

12 tracingDynFlags :: DynFlags

13 tracingDynFlags = panic "tracingDynFlags used"

Now any function which would receive this value as an argument

and would try to use it would panic; obviously a fragile design. So

this got fixed on the very same day by only panicking for some

less commonly used fields of the DynFlags record (the settings) and

using some default values for the others:

12

https://gitlab.haskell.org/ghc/ghc/-/commit/d06edb8e93d6d19bbd898e2b2e26755598bb11f3
https://gitlab.haskell.org/ghc/ghc/-/commit/ab50c9c527d19f4df7ee6742b6d79c855d57c9b8

1 commit 37f9861ff65552c2bb6a85c3b27e0228275bc0b6

2 Date: Tue Jun 12 23:29:53 2012 +0100

3

4 Make tracingDynFlags slightly more defined

5

6 In particular, fields like ’flags’ are now set to the default,

7 so at least they will work to some extent.

8

9 -- Do not use tracingDynFlags!

10 -- tracingDynFlags is a hack, necessary because we need to be

11 -- able to show SDocs when tracing, but we don’t always have

12 -- DynFlags available. Do not use it if you can help it.

13 -- It will not reflect options set by the commandline flags,

14 -- and all fields may be either wrong or undefined.

15 tracingDynFlags :: DynFlags

16 tracingDynFlags = defaultDynFlags tracingSettings

17 where tracingSettings = panic "Settings not defined in

tracingDynFlags"

It turned out some function probably tried to use the settings from

their given DynFlags argument and panicked. This was fixed in the

similar manner, with less partial fields:

1 commit cfb038de5df3fd2521987c143b3e5257d5d20055

2 Date: Fri Jul 20 19:10:14 2012 +0100

3

4 Make tracingSettings have just enough information to get

5 debug output printed

6

7 I suspect I have done the wrong thing; I hope someone can

8 improve.

9

10 {-# OPTIONS_GHC -fno-warn-missing-fields #-}

11 -- So that tracingSettings works properly

12

13 tracingDynFlags :: DynFlags

14 tracingDynFlags = defaultDynFlags tracingSettings

15

16 tracingSettings :: Settings

17 tracingSettings = Settings { sTargetPlatform = tracingPlatform }

18

19 tracingPlatform :: Platform

20 tracingPlatform = Platform { platformWordSize = 4

21 , platformOS = OSUnknown }

The important bit is the -fno-warn-missing-fields option passed to

GHC, which hides the warning mentioning that tracingSettings

is still a partially defined record value. As you might expect, it

turned out that some function tried to use one of the partial fields

(namely the platform constants in the settings) and panicked.
5

5: Tracked in GHC issue #7304

— arm-linux: Missing field in

record construction DynFlags.

sPlatformConstants

As there were no default platform constants to use to fill the

tracingSettings, it was decided to bite the bullet and treat DynFlags

according to what it had become: a global variable:

1 commit f7cd14fd30d40ae7e904a533804f43d43dd8f439

2 Date: Mon Oct 8 21:55:23 2012 +0100

13

https://gitlab.haskell.org/ghc/ghc/-/commit/37f9861ff65552c2bb6a85c3b27e0228275bc0b6
https://gitlab.haskell.org/ghc/ghc/-/commit/cfb038de5df3fd2521987c143b3e5257d5d20055
https://gitlab.haskell.org/ghc/ghc/-/issues/7304
https://gitlab.haskell.org/ghc/ghc/-/issues/7304
https://gitlab.haskell.org/ghc/ghc/-/issues/7304
https://gitlab.haskell.org/ghc/ghc/-/issues/7304
https://gitlab.haskell.org/ghc/ghc/-/commit/f7cd14fd30d40ae7e904a533804f43d43dd8f439

3

4 Put the DynFlags in a global variable for tracing; fixes #7304

5

6 This is an ugly kludge to make a DynFlags value available for

7 the ’trace’ functions. It may not be the value we really ought

8 to use, but it’ll be good enough for the pretty-printer to use

9

10 Ideally we’d pass the real DynFlags down to all the trace

11 calls, but this will do for now at least.

12

13 -- Do not use unsafeGlobalDynFlags!

14 --

15 -- unsafeGlobalDynFlags is a hack, necessary because we need to be

16 -- able to show SDocs when tracing, but we don’t always have

17 -- DynFlags available.

18 --

19 -- Do not use it if you can help it. You may get the wrong value!

20

21 GLOBAL_VAR(v_unsafeGlobalDynFlags,

22 panic "v_unsafeGlobalDynFlags: not initialised", DynFlags)

23

24 unsafeGlobalDynFlags :: DynFlags

25 unsafeGlobalDynFlags = unsafePerformIO $ readIORef

v_unsafeGlobalDynFlags

26

27 setUnsafeGlobalDynFlags :: DynFlags -> IO ()

28 setUnsafeGlobalDynFlags = writeIORef v_unsafeGlobalDynFlags

Notice that the default value of the global variable is a panic again!

This means that our the story isn’t over yet:

1 commit 5166ee94e439375a4e6acb80f88ec6ee65476bbd

2 Date: Mon Mar 16 18:36:59 2015 +0100

3

4 Dont call unsafeGlobalDynFlags if it is not set

5

6 Parsing of static and mode flags happens before any session

7 is started, i.e., before the first call to ’GHC.withGhc’.

8 Therefore, to report errors for invalid usage of these

9 two types of flags, we can not call any function that needs

10 DynFlags, as there are no DynFlags available yet

11 (unsafeGlobalDynFlags is not set either). So we always print

12 "on the commandline" as the location, which is true

13 except for Api users, which is probably ok.

14

15 When reporting errors for invalid usage of dynamic flags

16 we /can/ make use of DynFlags, and we do so explicitly in

17 DynFlags.parseDynamicFlagsFull.

18

19 Before, we called unsafeGlobalDynFlags when an invalid

20 (combination of) flag(s) was given on the commandline,

21 resulting in panics (#9963).

And the expected fix similar to the ones above:

1 commit 4e98b4ff98e127aa9ef4fa1e85bdf0efa41f0902

2 Date: Sat Mar 26 00:42:11 2016 +0100

3

4 DynFlags: Initialize unsafeGlobalDynFlags enough to be useful

14

https://gitlab.haskell.org/ghc/ghc/-/commit/5166ee94e439375a4e6acb80f88ec6ee65476bbd
https://gitlab.haskell.org/ghc/ghc/-/commit/4e98b4ff98e127aa9ef4fa1e85bdf0efa41f0902

5

6 Previously unsafeGlobalDynFlags would bottom if used prior to

7 initialization. This meant that any attempt to use the

8 pretty-printer early in the initialization process of the

9 compiler would fail. This is quite inconvenient.

10

11 Here we initialize unsafeGlobalDynFlags with defaultDynFlags,

12 bottoming only if settings is accessed.

13

14 See #11755.

15

16 -- | This is the value that ’unsafeGlobalDynFlags’ takes before

17 -- it is initialized.

18 defaultGlobalDynFlags :: DynFlags

19 defaultGlobalDynFlags =

20 (defaultDynFlags settings) { verbosity = 2 }

21 where

22 settings = panic "v_unsafeGlobalDynFlags: not initialised"

23

24 GLOBAL_VAR(v_unsafeGlobalDynFlags, defaultGlobalDynFlags,DynFlags)

As you might expect, some users reported unexpected panics

6
because some code tried to access the settings field. At this point 6: in GHC issue #18339 — A plu-

gin’s DynFlags not properly shared

with GHC under Windows?

you may be relieved to learn that our work allowed us to replace

this global DynFlags variable with 3 global Bool variables 7
that never

7: These 3 global variables corre-

spond to 3 of the 4 “static flags”

that were combined with the “dy-

namic flags” in commit bbd3c399:

-fno-state-hack, -dppr-debug and -dno

-debug-output. [Due to the use of

global variable to store the DynFlags,

there became no difference between

dynamic and static flags.]

panic. Ideally we would get rid of them too, but it requires a lot

more work.

Like most aspects of design, the better design was only realized

by breaking up a large element in the design space (DynFlags) into

understandable constituent parts, and then adding logic to handle

those parts individually.

3.2.6 When immutable really becomes mutable: GHCi

The GHC library has mostly been designed to serve the GHC

program. Hence it was architected to follow a one-shot use case

which consists in executing the compiler program for a short period

of time over a given set of input files to produce the output files

(object code, libraries, executables. . .):

Inputs OutputsGHC

In this model, the command-line flags are constant during the

whole execution (ignoring the caveats mentioned in previous

sections). However, the implementation of the interactive REPL

(GHCi) broke this model! One would think that GHCi would be

implemented as an independent client of ghc-lib:

15

https://gitlab.haskell.org/ghc/ghc/-/issues/18339
https://gitlab.haskell.org/ghc/ghc/-/issues/18339
https://gitlab.haskell.org/ghc/ghc/-/issues/18339
https://gitlab.haskell.org/ghc/ghc/-/commit/bbd3c399939311ec3e308721ab87ca6b9443f358

*.hs *.o

Parameters

GHC
program

GHC
library

uses

GHCi
program

uses

But instead GHCi has been implemented directly within both ghc-
lib and the GHC program, simply with a --interactive command-

line flag to enable it. The trouble is that GHCi provides a command

to set and unset some command-line flags interactively. Thus the

design now looks more like this:

Inputs OutputsGHC(i)

That is, a very stateful design:

I inputs (command-line flags) are part of the state and are

modified during the execution of the session

I outputs are also read back: e.g. produced object code is

interactively linked with the GHC process itself

I the session is no longer one-shot: it lasts until the user quits

the interpreter.

This is a large departure from a straightforward one-shot model.

Doing some code archaeology, we can see that the feature to set

the DynFlags interactively was broken from the very beginning

(Listing 4):

Listing 4: Commit adding GHCi’s

setOptions feature

1 commit 459e7bd4622ea5bb8e90511b5fc6c7d8058dbd5f

2 Date: Fri Nov 17 16:53:28 2000 +0000

3

4 ...

5

6 - :set sort of works - you can do ":set -dshow-passes", for

example

7

8 +-- set options in the interpreter. Syntax is exactly the same as

9 +-- the ghc command line, except that certain options aren’t

10 +-- available (-C, -E etc.)

11 +--

12 +-- This is pretty fragile: most options won’t work as expected.

13 +-- ToDo: figure out which ones & disallow them.

14 setOptions :: String -> GHCi ()

15 -setOptions = panic "setOptions"

16 +setOptions str =

17 + io (do leftovers <- processArgs static_flags (words str) []

18 + dyn_flags <- readIORef v_InitDynFlags

19 + writeIORef v_DynFlags dyn_flags

20 + leftovers <- processArgs dynamic_flags leftovers []

21 + dyn_flags <- readIORef v_DynFlags

22 + writeIORef v_InitDynFlags dyn_flags

23 + if (not (null leftovers))

24 + then throwDyn (OtherError ("unrecognised flags: "

16

https://gitlab.haskell.org/ghc/ghc/-/commit/459e7bd4622ea5bb8e90511b5fc6c7d8058dbd5f

25 + ++ unwords leftovers))

26 + else return ()

27 +)
Tracked in GHC issue #19299 —

GHCi crashes with external inter-

preter anduser definedprompt func-

tion

A testimony of the fragility of the design is that the feature is still

brokenin the same way 20 years later in GHC 8.10.5, as we show in

Listing 5.

Listing 5: Modifying some unex-

pected DynFlags interactively in

GHCi 8.10.5

1 $ ghc-8.10.5 --interactive

2 GHCi, version 8.10.5: https://www.haskell.org/ghc/ :? for help

3 > :set -fexternal-interpreter

4 > 1

5 ghc: ghc-iserv terminated (-11) <-- segmentation fault

6 Leaving GHCi.

The truth is that most systems with shared mutable state like this

are very difficult to program correctly[7] and GHC, even with the

safety guarentees provided by Haskell, is no exception.

To add to the difficulty, GHCi requires two sets of input flags—

one for the code we type in the REPL and another for the code we

load from source files—which hopefully stay coherent one relative

to the other.

Additionally, as of the 9.4 release, GHC partially supports multi-

ple home units—independent packages loaded at the same time

in a compiler session—which is a welcome feature. For example

it allows loading several units corresponding to several packages

under development into GHCi (e.g. a package and its testsuite).

However in current GHC implementation each home-unit needs

to have its own set of DynFlags. The burden of providing compatible

flags is, once again, upon the user as the compiler can only loosely

check that different DynFlags are compatible due to their ripple

effects. Note that the multiple home unit

feature is yet to be made fully com-

patible with several others (GHCi,

Backpack, . . .). For example, most

GHCi commands aren’t supported

yet.

Ultimately we hope that this feature

will subsume several hacks currently

used, e.g. to implement Backpack

support of .bkp files. But in the short

term, it can be considered as yet an-

other force-fitted featuremaking the

use of DynFlags evenmore pervasive.

In a correctly layered codebase, this

feature would have been imple-

mented as an additional layer in the

driver code, making use of the code

already in place that handles a single

home-unit at a time, and generaliz-

ing it to handle several home-units.

Cf Section 4.2.3.

This is yet another example of how modern demands placed

uponGHC—in this case the simultaneous development ofmultiple

packages—both increase the benefits of modularity and increase

the costs of entanglement alike.

3.3 Top-level session state (HscEnv)

HscEnv is a datatype representing the top-level session state in

ghc-lib. It is defined as follows:

1 newtype Ghc a = Ghc { unGhc :: Session -> IO a }

2

3 -- | The Session is a handle to the complete state of a

4 -- compilation session. A compilation session consists of

5 -- a set of modules constituting the current program or

6 -- library, the context for interactive evaluation, and

7 -- various caches.

8 data Session = Session !(IORef HscEnv)

9

10 -- | HscEnv is like Session’, except that some of the fields are

17

https://gitlab.haskell.org/ghc/ghc/-/issues/19299
https://gitlab.haskell.org/ghc/ghc/-/issues/19299
https://gitlab.haskell.org/ghc/ghc/-/issues/19299
https://gitlab.haskell.org/ghc/ghc/-/issues/19299

11 -- immutable.

12 --

13 -- An HscEnv is used to compile a single module from plain Haskell

14 -- source code (after preprocessing) to either C, assembly or C--.

15 -- It’s also used to store the dynamic linker state to allow for

16 -- multiple linkers in the same address space. Things like the

17 -- module graph don’t change during a single compilation.

18 --

19 -- Historical note: \"hsc\" used to be the name of the compiler

20 -- binary, when there was a separate driver and compiler.

21 -- To compile a single module, the driver would invoke hsc on

22 -- the source code... so nowadays we think of hsc as the layer

23 -- of the compiler that deals with compiling a single module.

24 data HscEnv = HscEnv

25 { hsc_dflags :: DynFlags

26 -- ^ The dynamic flag settings

27 , hsc_IC :: InteractiveContext

28 -- ^ The context for evaluating interactive statements

29 , ...

These comments are misleading because the compilation manager

(a.k.a. --make mode) and the interactive UI (GHCi) have been

merged with the one-shot mode in 2005. Since then HscEnv is no C.f. commit 069370a5

longer only “used to compile a single module” but to represent

the global mutable state of a GHC session (interactive or not).

In particular it contains the command-line flags (DynFlags) and

the GHCi state (InteractiveContext), which contains its own set of

DynFlags.

3.3.1 HscEnv’s DynFlags

DynFlags stored into HscEnv can be modified with GHCi commands

and we have already seen in Section 3.2.6 an example of incorrect

DynFlags handling in GHCi 8.10.5.

Similarly, HscEnv’s DynFlags can also be modified before each

module compilation to take into account the OPTIONS_GHC pragma

which allows some GHC command-line flags to be set per module.

This pragma in itself is a layering violation as some command-line

flags aremeant to be global (i.e.must apply to allmodules compiled

during the session) while others can really be set per module. We return to this point in Sec-

tion 4.2.4.

Listing 6 is an example of a dubious OPTIONS_GHC pragma, and

listing 7 shows its incorrect handling still present in GHC 9.2. It

shows GHC expecting an interface for a module built with the

“vanilla” (static) way while trying to load it from an interface file

for the “dynamic” way (.dyn_hi), which is nonsense. Ways are

described in more details in Section 3.4.3.

Listing 6: Dubious OPTIONS_GHC us-

age

1 {-# OPTIONS_GHC -static #-}

2 module Test where

3

4 main :: IO ()

5 main = putStrLn "Hello World"

18

https://gitlab.haskell.org/ghc/ghc/-/commit/069370a53a92a68a6df163f07cec47b3d62632e7

Listing 7: Incorrect OPTIONS_GHC han-
dling in GHC 9.2 of the code in List-

ing 6

1 $ ghc-9.2 Test.hs -dynamic

2 [1 of 1] Compiling Test

3 Test.hs:2:8:

4 error: Bad interface file: .../base-4.16.0.0/Prelude.dyn_hi

5 mismatched interface file profile tag (wanted "", got "dyn")

3.3.2 HscEnv’s caches

HscEnv is used as a shared global mutable store. In particular

it contains several caches for module interfaces read from disk

(external package state, EPS) or generated during the session (home

package table, HPT).

One major issue is that there is only one such module environ-

ment. This is a problem with any kind of cross or multi-target

compilation where we would like to distinguish modules belong-

ing to different environments (e.g. host vs target, profiling vs
non-profiling, dynamic vs non-dynamic).

As functional programmers are well aware, performing implicit

side-effects on a single shared global mutable environment is

difficult to do correctly. For example, the order used to read

interfaces matters, but it shouldn’t: the caches contain either too

few, toomuch or incorrect information.We describe these problems

below and provide a list of issues which result from each. We begin

with “too-few-information”:

too little information If the first read of a module interface is per-

formed for a module having the -fignore-interface-pragmas

flag set (or compiled with -O0 as the optimization level im-

plicitly disables/enables the flag), the interface file will be

read partially (for performance reasons) and stored in the

cache. The next module reading the interface will get the

partial information even if it doesn’t use the flag.

I #8635 — GHC optimisation flag ignored when importing a

local module with derived type classes

I #9370 — unfolding info as seen when building a module

depends on flags in a previously-compiled module

I #13002 — :set -O does not work in .ghci file

I #20021 — Optimization options (esp. -O2) in OPTIONS_GHC

pragma can cause frustrating behavior

I #20056 — -fignore-interface-pragmas doesn’t work well with

--make

too much information some information retrieved to compile one

module leak to compile other modules while they shouldn’t.

I #2182 — GHC sessions (--make, --interactive, GHC API)

erroneously retain instances

I #8427 — GHC accepts invalid program because of EPS

19

https://gitlab.haskell.org/ghc/ghc/-/issues/8635
https://gitlab.haskell.org/ghc/ghc/-/issues/8635
https://gitlab.haskell.org/ghc/ghc/-/issues/9370
https://gitlab.haskell.org/ghc/ghc/-/issues/9370
https://gitlab.haskell.org/ghc/ghc/-/issues/13002
https://gitlab.haskell.org/ghc/ghc/-/issues/20021
https://gitlab.haskell.org/ghc/ghc/-/issues/20021
https://gitlab.haskell.org/ghc/ghc/-/issues/20056
https://gitlab.haskell.org/ghc/ghc/-/issues/20056
https://gitlab.haskell.org/ghc/ghc/-/issues/2182
https://gitlab.haskell.org/ghc/ghc/-/issues/2182
https://gitlab.haskell.org/ghc/ghc/-/issues/8427
https://gitlab.haskell.org/ghc/ghc/-/issues/8427
https://gitlab.haskell.org/ghc/ghc/-/issues/8427

poisoning

I #9422— EPT caching on --make can make spurious instances

visible

I #13102 — orphan family instances can leak through the EPS

in --make mode

incorrect information some information is no longer correct as

the implicit ordering has been violated (e.g. after a reload in

GHCi) but the cache isn’t properly updated to reflect this.

I #2404 — GHCi :r does not reset imported class instances

I #9729 — GHCi accepts invalid programs when recompiling

I #10420 — “Care with plugin imports” is wrong / orphan

RULE visibility (rewrite rules defined into plugins leaking

into compiled modules!)

The list of tickets is not exhaustive, but it shows that issues of this

kind have been bedeviling GHC users for quite some time. Some

of them aren’t fixed at the time of writing.

3.3.3 Code reuse

Similarly to DynFlags (Section 3.2), the HscEnv datatype isn’t confined

into top-level driver modules but passed to many sub-components:

the type-checker, renamer, desugarer (HsToCore), Core optimizer,

most code generators. Only the parser has been spared. The trouble

is that it makes these sub-components much more difficult or even

impossible to reuse.

For example, suppose that some user wants to compile a Haskell

module into ByteCode and print it (e.g. for debugging or pedagog-

ical reasons). The interface to generate ByteCode isn’t documented

(another common issue) but looks reasonable (listing 8):

Listing 8: ByteCode generation code

interface

1 byteCodeGen :: HscEnv
2 -> Module
3 -> [StgTopBinding]
4 -> [TyCon]
5 -> Maybe ModBreaks
6 -> IO CompiledByteCode

Modulemust be themodule togenerateByteCode for; [StgTopBinding

] must be the list of top-level bindings of the module in STG repre-

sentation; [TyCon] must be the list of top-level type constructors of

the module; Maybe ModBreaks is weird, probably something related

to breakpoints so we can pass Nothing for now; CompiledByteCode

looks like what we want to obtain.

So far so good, however there are two issues: why does it need a

HscEnv argument and why is it running in the IO monad? It turns

20

https://gitlab.haskell.org/ghc/ghc/-/issues/8427
https://gitlab.haskell.org/ghc/ghc/-/issues/8427
https://gitlab.haskell.org/ghc/ghc/-/issues/8427
https://gitlab.haskell.org/ghc/ghc/-/issues/8427
https://gitlab.haskell.org/ghc/ghc/-/issues/9422
https://gitlab.haskell.org/ghc/ghc/-/issues/9422
https://gitlab.haskell.org/ghc/ghc/-/issues/13102
https://gitlab.haskell.org/ghc/ghc/-/issues/13102
https://gitlab.haskell.org/ghc/ghc/-/issues/2404
https://gitlab.haskell.org/ghc/ghc/-/issues/9729
https://gitlab.haskell.org/ghc/ghc/-/issues/10420
https://gitlab.haskell.org/ghc/ghc/-/issues/10420

out that HscEnv argument is used to get:

I the Logger that controls logging on stdout/stderr and gener-

ation of dump files

I the DynFlags that are used to get some information about the

target: OS, way (profiling or not), word size, stack size limit,

stack size, architecture registers...

I the Interpreter that is used to determine the interpreter

way (profiling or not, redundant with the DynFlags above as

both ways must match), allocate string literals (MallocStrings

command), allocate wrappers for foreign calls (PrepFFI com-

mand).

The only way to discover which fields of the HscEnv argument are

used is to peruse the function’s code and likewise that of recursively

called functions to which the HscEnv value is passed.

In this specific case the code generator is tied to the interpreter

so that it’s impossible to generate ByteCode without providing an

interpreter, even if the code isn’t meant to be executed. This is very

anti-modular.
8
If an Interpreter argument was explicitly required, 8: Even more if you know that there

is no interpreter command to free

the allocated strings. . .

the clumsiness of the design would have been obvious because the

types would tell us so!

3.4 Interpreter

The interpreter was originally designed for the interactive user

interface of GHC (GHCi) to execute some Haskell code. It is another

component of GHC that has seen its usage extended without a

proper redesign. In addition to GHCi, the interpreter was later

reused to implement Template Haskell and compiler plugins

(discussed in Section 3.5).

The interpreter supports executing Haskell programs compiled

into both ByteCode or into native code (.o, .a, .so, .dll). The latter is
much more difficult to do because native code is platform specific

(e.g. x86-64 vs AArch64) and GHC supports several ABIs for the

same platform (e.g. with profiling enabled or not, dynamically

linked or not, etc.).

3.4.1 Internal interpreter

Historically GHC only had a single kind of interpreter, that we

now call the internal interpreter. The internal interpreter allows the

execution of native object code by loading them into the running

GHC process before calling into them. Loading is called “runtime linking”

in GHC and it is implemented in the

runtime system (RTS).

In order to do this, the system is subject to a major constraint:

the native object code must be ABI compatible with the compiler it-
self. As such, the internal interpreter cannot be used with cross-

compiled Haskell code, nor with object code produced with a

21

slight ABI change (e.g. with profiling enabled). In the rest of this

section, we document the impact of this design decision, includ-

ing workarounds and issues that have arisen from it. It is likely

that some of these issues are familiar with the general Haskell

community.

3.4.2 Avoiding the use of the interpreter

A trivial non-solution to the internal interpreter limitations is to

avoid using features that rely on the interpreter (Template Haskell

and compiler plugins). This is the solution used by GHC itself.

Suppose we have a GHC compiler program (ghc-stage0) that

produces object code with ABI, old_abi. Now we use ghc-stage0

to build a newGHC compiler program (ghc-stage1) that produces

object code with ABI, new_abi. ghc-stage1 can’t support the

internal interpreter because it has been built using old_abi but

builds object code using new_abi: the object code it builds aren’t

ABI compatible with its own, so it can’t load them!

The fact that this restricted ghc-stage1 compiler doesn’t support As long as stage1 compilers are

used as placenta to give birth to

stage2 compilers, and they don’t

outlive this bootstrapping phase,

then they only impose a burden

on GHC developers. If they are dis-

tributedmorewidely, however, their

limitations may backfire.

As a concrete example, cross-

compilers don’t support compiler

plugins (#14335). !7377 implements

a promising method to workaround

this limitation, only requiring the

presence of the internal interpreter,

hence a stage2 compiler. Sadly,

at the time of writing, cross-

compilers are built and distributed

as stage1 compilers (#19174) for

no good reason—mostly because

GHC’s build system would need

to be adapted to do this and its

implementation makes this utterly

not trivial—hence we can’t use this

workaround.

the interpreter isn’t an issue because it is typically only used to

build another GHC (ghc-stage2) from the same sources (hence

also producing object code with ABI new_abi) and building GHC

doesn’t require an interpreter. ghc-stage2 is built with new_abi

and produces object code with new_abi, thus it supports the

internal interpreter. It is the compiler that is distributed in GHC

binary distributions.

3.4.3 Working around “ways”

As mentioned above, GHC can produce object code with different

ABIs depending on some options. For example, it can produce

objects that:

I use dynamic linking or not

I support profiling (cost-centres, etc.) or not

I use additional debug assertions or not

I use different heap object representation (e.g. tables_next_-

to_code)

Some of these options are set at GHC compilation time andwedon’t

consider them further here (e.g. tables_next_to_code). Others

are configurable at runtime via command-line flags and are called

“ways”.

The trouble is that when GHC builds some object code with a

different way than its own, it is actually performing some kind of

cross-compilation! As we have seen above, this means that it can’t

use the internal interpreter to load object code it has built into its

own process to execute them. That inability to load is inconvenient

22

https://gitlab.haskell.org/ghc/ghc/-/issues/14335
https://gitlab.haskell.org/ghc/ghc/-/merge_requests/7377
https://gitlab.haskell.org/ghc/ghc/-/issues/19174

because it means, in turn, that Template Haskell cannot be used.

Fortunately, a workaround has been implemented.

First, GHC had to distinguish files (object code, interfaces,

archives etc.) generated with different ways. For this purpose

it uses tags, for example “p” for the profiled way, “debug” for the

debug way and “dyn” for the dynamically linked way. Ways can be

combined, and so tags can also be combined. For example, object

code built with dynamic + profiling ways would have the filename

extension .dyn_p.o.

The workaround is for the interpreter to load object code that is

not the object code that is used to build the real build product. For

example, supposing GHC isn’t built with the profiled way but is

asked to build profiled object code (via -prof command-line flag),

if Template Haskell, GHCi or plugins are used, GHC will use both

non-profiled objects (in the interpreter) and profiled objects (to

build the real product).
9

9: However, installed packages may

not provide objects for all the pos-

sible way combinations as it would

make compilation times and occu-

pied disk space explode, so this

scheme is fragile. E.g. #15394 —

GHC doesn’t come with dynamic

object files/libraries compiled with

profiling .

As GHC only has a single global unit environment (stored in

HscEnv, c.f. Section 3.3), it doesn’t separate interfaces read for the

interpreter (non-profiled) and interfaces read for the final product

(profiled). Quoting the GHC wiki
§
:

The way this is done currently is inherently unsafe, be-

cause we use the profiled .hi files with the unprofiled

object files, and hope that the two are in sync.

It also led to several bugs because GHC has to juggle with ways for E.g. #15492— Plugin recompilation

check fails when profiling is enabled
target code, plugins, Template Haskell and GHCi, and sometimes

fails to do it correctly.

3.4.4 -dynamic-too

On another front, to avoid compilation times doubling because

of GHC’s need of two sorts of object code (one for its own way

and another for the actual user-selected way), another hack was

added: -dynamic-too. With this flag, GHC acts like a multi-target

compiler and produces both static and dynamic object code in the

same session.

The trouble is that the infrastructure of the compilerwasn’tmeant

to support multi-target compilation and has not be redesigned to

do so. Quoting the wiki again
¶
:

-dynamic-too is buggy, slow, and has an ugly imple-

mentation

In addition, it is a very limited and ad-hoc multi-way support

because it is only available for the dynamic way, not the other ones.

For example there is no equivalent -profiling-too flag.

§ https://gitlab.haskell.org/ghc/ghc/wikis/remote-GHCi
¶ https://gitlab.haskell.org/ghc/ghc/-/wikis/
dynamic-linking-debate

23

https://gitlab.haskell.org/ghc/ghc/-/issues/15394
https://gitlab.haskell.org/ghc/ghc/-/issues/15394
https://gitlab.haskell.org/ghc/ghc/-/issues/15394
https://gitlab.haskell.org/ghc/ghc/-/issues/15394
https://gitlab.haskell.org/ghc/ghc/-/issues/15492
https://gitlab.haskell.org/ghc/ghc/-/issues/15492
https://gitlab.haskell.org/ghc/ghc/-/issues/15492
https://gitlab.haskell.org/ghc/ghc/wikis/remote-GHCi
https://gitlab.haskell.org/ghc/ghc/-/wikis/dynamic-linking-debate
https://gitlab.haskell.org/ghc/ghc/-/wikis/dynamic-linking-debate

Putting it all together, listing 9 shows an actual excerpt of GHC

code obtained by combining bug-driven development
�
, shotgun

parsing and mutation of DynFlags (Section 3.2), ad-hoc (and dubi-

ous) handling of compiler ways, automatic activation of a buggy

feature (-dynamic-too). Notice that this code also mentions the

external interpreter which we discuss in the next section.

Listing 9: Automatically enabling

-dynamic-too

1 -- #8180 - when using TemplateHaskell, switch on -dynamic-too so
2 -- the linker can correctly load the object files. This isn’t
3 -- necessary when using -fexternal-interpreter.
4 dflags1 = if hostIsDynamic && internalInterpreter &&
5 not isDynWay && not isProfWay && needsLinker
6 then gopt_set lcl_dflags Opt_BuildDynamicToo
7 else lcl_dflags
8

9 -- #16331 - when no "internal interpreter" is available but we
10 -- need to process some TemplateHaskell or QuasiQuotes, we
11 -- automatically turn on -fexternal-interpreter.
12 dflags2 = if not internalInterpreter && needsLinker
13 then gopt_set dflags1 Opt_ExternalInterpreter
14 else dflags1

3.4.5 External interpreter

The main issue with the internal interpreter is that it can only load

object code that is ABI compatible with itself. So the idea behind

the external interpreter is to delegate the execution of the code to

another process (called iserv).

The iserv process may use a different ABI than the compiler,

allowing it to load object code that the compiler can’t! It can even

itself delegate execution of the object code to another process in a

virtual machine (e.g. qemu, wine) or on a remote machine with an

appropriate architecture.

Ideally, for each way combination a corresponding iserv pro-

gram should be available. Bydefault, GHC tries to spawn adifferent

iserv process depending on the selected ways: ghc-iserv-prof,

ghc-iserv-dyn, etc. It could perhaps build these programs on de-

mand but it’s not currently done. Alternatively a custom external

interpreter program can be specifiedwith the -pgmi command-line

option.

The major advantage of the external interpreter design is that

it cleanly decouples the compiler and the interpreter: both use

separate processeswith different runtime systems, loader states, etc.

However, this comes with a different, albeit more acceptable, major

constraint compared to the internal interpreter: a communication
protocol is needed between the compiler and the interpreter. In particular

� https://en.wikipedia.org/wiki/Tester-driven_development

24

https://en.wikipedia.org/wiki/Tester-driven_development

transferred data must be serialized, hence be serializable.

Plugins It has been possible to work out a protocol for GHCi

and Template Haskell. However, it hasn’t been possible to devise a

protocol to make the external interpreter support plugins. Some of

the reasons are:

I some plugins have access to HscEnv (Section 3.3) which would

have to be serialized and this would be very difficult

I Core representation is cyclic (c.f. tying-the-knot
∗∗
) hence

making it more difficult/costly to serialize, e.g. for plugins

manipulating Core.

I Wewould have to deal with ABI differences such as different

word sizes which would be quite difficult: a Word in the

compiler may not have the same size as a Word in the

interpreter.

I GHC stores global variables (for string interning, for unique

number generation) into the runtime system itself. So we

would have to work out a way to synchronize both compiler

and interpreter runtime systems.

As a consequence, plugins aren’t supportedwhen the external interpreter #14335 — Plugins don’t work with

-fexternal-interpreteris used.
A theoretically easy way to fix this would be to use the external

interpreter for everything except for plugins which would still

use the internal interpreter. However, as GHC has grown with

the implicit assumption that there was a single interpreter, this

fix is in fact far from trivial to implement, and was one of the first

motivations for writing this paper.

3.5 Plugins and Hooks

Plugins were already mentioned several times in previous sections.

To recap, plugins use the same interpreter as Template Haskell

and GHCi. As GHC currently only supports a single interpreter

instance at a time, plugins don’t workwhen the external interpreter

is used (Section 3.4.5). As GHC only supports a single unit envi-

ronment (EPS/HPT etc.), module interfaces loaded for plugins are

mixed with target code module interfaces with risks of unsound

intercontamination (c.f. Section 3.3.2).

The initial plugin implementation was for a single kind of plugin

(custom Core-to-Core pass
10
). It then grew up “organically”

11
from 10: commit 592def09

11: The suboptimal “organic growth”

was discussed after Moritz Anger-

man’s “More Powerful GHC Plug-

ins” talk at the Haskell Implemen-

tors Workshop (HIW) in 2016.

this point, without redesign, to support several kinds of plugins:

type-checker, renamer, interface loader, Template Haskell splice

modifier, even “DynFlags plugins” whose initial purpose was to

setup hooks (c.f. “hooks” later in this section).

∗∗ https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/
tying-the-knot

25

https://gitlab.haskell.org/ghc/ghc/-/issues/14335
https://gitlab.haskell.org/ghc/ghc/-/issues/14335
https://gitlab.haskell.org/ghc/ghc/-/commit/592def09c4f87f517b31aa4c4cec51fc8764a859
https://www.youtube.com/watch?v=g9NEQ5XtXyk&list=PLnqUlCo055hX1F0PCi9FjdllYQMwCQvps&index=4
https://www.youtube.com/watch?v=g9NEQ5XtXyk&list=PLnqUlCo055hX1F0PCi9FjdllYQMwCQvps&index=4
https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/tying-the-knot
https://gitlab.haskell.org/ghc/ghc/-/wikis/commentary/compiler/tying-the-knot

As a result, we still use a single record (data Plugin) to support

plugins for very different parts of the compiler. As you might

imagine, this datatype is directly used by each of those parts of

the compiler, creating artificial dependencies between parts that

ought to be independent of each other.
12

12: C.f. #18921 — Refactor hooks

and plugins

Hooks The “hooks” mechanism provided by the GHC library is

very similar to plugins. Hooks also allow the customisation of some

compiler operations. They have been introduced to accommodate

GHCJS’s needs.
13

13: GHCJS is a Haskell to JavaScript

compiler based on GHC. Hooks

have been added in commit

6f799899

Hooks are very similar to plugins but they can’t be setup similarly

to plugins (i.e. via -fplugin command-line flag). They can only be

set via direct use of the ghc-lib API.

Hooks were of course stored into the DynFlags. Hence the next

obvious step was to add a new kind of plugins: DynFlagsmodifying

plugins which allow custom modification of the DynFlags when

plugins are loaded...
14

14: 900cf195

Ourwork led us to store hookswith the rest of the session state in

HscEnv.15 We replaced DynFlags plugins with “driver” plugins—that 15: ecfd0278

allow arbitrary modification of the HscEnv—to still allow plugins

to set hooks. In retrospect, a better solution would have been to

only allow plugins to set hooks instead of giving them access to

the whole DynFlags or HscEnv. By giving them access to the whole of

DynFlags or HscEnvwe risk calcifying and coupling DynFlags or HscEnv

just as SDoc became accidentally coupled to DynFlags (Section 3.5).

Fixing this would be good, but it could break existing plugins

that have already realized this coupling and are doing more than

setting hooks. Or hooks could be transformed into proper plugins

as GHC also supports “static plugins”—plugins that can only be

set via the GHC API
16
—making the hooks mechanism redundant. 16: da05d79d

3.6 Template Haskell

Template Haskell (TH) allows the execution of Haskell code at

compilation time to transform the abstract syntax tree of a Haskell

module when it is compiled.

TH has been implemented by reusing the interpreter already

used by GHCi. The following citation from the first Template

Haskell paper [8] shows that the (internal) interpreter has been

reused:

“When a compile-time function is invoked, the com-

piler finds its previously-compiled executable and dy-

namically links it (and all the modules and packages it

imports) into the running compiler.

A module consisting completely of meta-functions

need not be linked into the executable built by the final

26

https://gitlab.haskell.org/ghc/ghc/-/issues/18921
https://gitlab.haskell.org/ghc/ghc/-/issues/18921
https://gitlab.haskell.org/ghc/ghc/-/commit/6f799899aa7cd9c59c9ebf9c9709f9423d93d307
https://gitlab.haskell.org/ghc/ghc/-/commit/900cf195ed9b372dadc378182a617a1bdf065908
https://gitlab.haskell.org/ghc/ghc/-/commit/ecfd0278cb811c93853c176fe5df60222d1a8fb5
https://gitlab.haskell.org/ghc/ghc/-/commit/da05d79d03e5e03e391b381f23c46fc02957abf7

link step (although ghc --make is not yet clever enough

to figure this out).” GHC still isn’t clever enough af-

ter 19 years, but it might soon: see

the ExplicitSpliceImports GHC Pro-

posal 412 with which GHC could

distinguish compile-time and run-

time module dependencies.

As mentioned in the quote above, Template Haskell doesn’t distin-

guish modules that are only used at compile time (Haskell code

executed with the interpreter) from modules needed at runtime.

As such, modules used only for Template Haskell at compile time

are conservatively linked with the final binary product, making it

slower to load for no good reason.

In addition, we can’t use two different versions of the same

package — one for Template Haskell and the other for the final

buildproduct—becauseGHCuses of a singlemodule environment

(c.f. Section 3.3.2).

Side effects Template Haskell splices can execute any IO action.

This ability is a security concern because it allows arbitrary code

to be executed at compilation time. It is also an issue when cross-

compiling and using the external interpreter (Section 3.4.5) because

the environment into which IO actions are executed isn’t well

specified. For example, a splice could try to read a file that is not

available from the external interpreter environment (e.g. due to

sandboxing, remote execution, or execution in a VM).

3.7 The Driver

In GHC the “Driver” is responsible for orchestrating other compil-

ers and linkers:

I HSC: which was the old name for the Haskell to C compiler

I GCC: to compile C files into object files

I Linker: to link object files

Over time the driverwas extended to support compilingmultiple

modules (“managed or --make” mode), to support GHCi interactive

context, etc. "A lot of code has been added to the

Main component; this is partly be-

cause there was previously a 3,000-

line Perl script called the "driver"

that was rewritten in Haskell and

moved into GHC proper, and also

because support for compiling mul-

tiple modules was added." [9]

The Driver’s main datatype is HscEnv: it’s the top-level session

state. As we already discussed in Section 3.3, its main issue is that

it is leaking into many unrelated components of the compiler. For

example, the type-checker directly manipulates HscEnv.

This lack of abstraction is the main issue but it’s not the only one.

We identified the following other issues:

It isn’t independent of GHC-the-program command-line inter-
face most driver functions require a HscEnv argument which can

only be created with an undocumented function in the GHC.Driver.

Main module:

1 newHscEnv :: DynFlags -> IO HscEnv

27

https://github.com/ghc-proposals/ghc-proposals/pulls/412
https://github.com/ghc-proposals/ghc-proposals/pulls/412

It isn’t self-consistent
(1) passing a valid DynFlags value is difficult as its “settings” field

has to be properly setup. Most users probably rely on initGhcMonad

:: GhcMonad m => Maybe FilePath -> m () in the GHC top-level module

or duplicate its code to avoid dealing with the GhcMonad abstraction.

(2) the HscEnv created by this function is useless for most pur-

poses because several fields (unit env, interpreter...) have to be

properly initialized,which canonly bedonewith setSessionDynFlags

::GhcMonad m => DynFlags -> m () or the similar setProgramDynFlags)

also in the GHC module. Or by duplicating their code.

Documentation is often missing, outdated, or incomplete
(1) the GHC.Driver.Main module is documented as the “Main API

for compiling plain Haskell source code.”, however, as we have

seen, it can’t really be used alone and a module further up in the

hierarchy has to be used.

(2) the undocumented use of HscEnv’s fields by each function

make their behavior impossible to predict.

The interface is inherently unsafe setting DynFlags is the main

way to tweak HscEnv. However DynFlags isn’t a set of flags but a

record, hence “flag” validation is very weak. As a result, users of

the API can’t know which flags they are allowed to modify at any

point during a session, nor if a flag has been taken into account or

ignored.

It isn’t full-featured some clients of the GHC API (e.g. HLS,

Haddock) have to (re)implement a complex driver of their own,

often duplicating code from GHC’s one.

4 Refactoring GHC using Domain-Driven
Design

So far, in the previous, we’ve described key problems with GHC.

Here, we describe what we want to do to remedy then. We will

quote several excerpts from “Domain-Driven Design: Tackling

Complexity in heart of Software” by Eric Evans [3]. This book

introduced "Domain-Driven Design" concept and principles which

prove to be very relevant to the issues we want to solve in GHC.

There are many principles in domain-driven design, but we

believe that even just getting the main ones
1
implemented into 1: Some domain-driven design prin-

ciples are already at the core of

Haskell programming (pure func-

tions, value objects, smart construc-

tors as factories, etc.) andwe don’t

mention them at all.

GHC would already be a major improvement over the status quo.

Namely we will describe the benefits and the required changes to

follow these domain-driven design principles:

28

I Ubiquitous language: use consistent and precise terminology

in code and documentation, and make it apparent at type-

level (Section 4.1)

I Domain isolation with layered architecture: use layering to

avoid spaghetti or lasagna code
††

(Section 4.2)

I Supple design: make code "a pleasure to work with, inviting

to change" (Section 4.3)

Each subsection goes into more details for each principle and

relates it to GHC issues mentioned in Section 3. We also present

the work already done to implement them and the work left to be

done.

4.1 Ubiquitous Language and Type-Driven Design

The ubiquitous language principle consists in using precise domain

terminology consistently in code, in documentation, and in speech.

In Haskell we can extend this principle to require that domain

terminology be represented at type-level in the code: type-driven
design. By doing this, functions have intention revealing interfaces,
expressed in the ubiquitous language, and checked by the type-

checker. “A project faces serious problems

when its language is fractured. [..]

The terminology of day-to-day dis-

cussions is disconnected from the

terminology embedded in the code”

[3] p. 25

Ubiquitous language in GHC GHC lacks an ubiquitous lan-

guage: some words used to describe the domain model are am-

biguous or are not used consistently, even among GHC developers.

As an example, the concept of a “package” changed frombeing “a

set of modules whose corresponding code objects are bundled into

a single library” to something much more fuzzy: A Cabal package

may now contain several library components and each of them

can be compiled into different units (depending on compilation

options, dependencies, etc.); modules of a unit are bundled into a

single library. Nowadays GHC mostly deals with units instead of

packages but the code was and still is using the old terminology in

many places.

In this example, using correct terminology would allow us

to make obvious that GHC’s user interface is ambiguous (e.g.

-package-namemay refer to different units), that GHC’s “package-

qualified imports” feature is similarly ambiguous, that some cabal-

install’s “projects” could perhaps be better subsumed by a hierar-

chical package component namespace, etc. “Persistent use of the ubiquitous lan-

guage will force the model’s weak-

nesses into the open.” [3] p. 26

Type-driven design in GHC GHC also doesn’t fully exploit type-

driven design: a lot of functions are partial; domain concepts aren’t

always represented at type-level; shotgun parsing is used a lot.

†† https://en.wikipedia.org/wiki/Spaghetti_code

29

https://en.wikipedia.org/wiki/Spaghetti_code

As an example, in Section 3.1 we showed that the concept of a

“module” got extended for Backpack to support “module holes”.

This wasn’t reflected neither in the language, nor in the model, nor

in the code.

Suppose we had introduced separate types to distinguish con-

crete modules from “holey” modules, then we wouldn’t need to

intertwine hole module resolution with concrete module interface

loading in Listing 2 (an example of “shotgun parsing”): module

interface loading only makes sense for concrete modules and we

could express it in the type of loadInterface.

Recommended concrete action In light of these problems, our

recommended concrete action is to make naming precise, consistent,
documented, and checked by the type system, adding new datatypes

and refactoring the existing ones as needed.

It should be no surprise to Haskellers that adding more informa-

tion into the type system yields numerous benefits: it helps create

maintainable and checkable code, it makes obvious and explicit the

interactions between different features and phases of the compiler,

and it allows GHC developers to more frequently think with types
during GHC’s development.

We recommend that GHC’s developers get acquainted with the

“Parse, don’t validate” slogan coined by Alexis King in [5], and

with the type-driven design principles underlying it. This cited

paper also gives several advices that we encourage every Haskell

developer to follow.

4.2 Layering and Componentization

An important domain-driven design principle is to divide complex

software into conceptual layers.

“The essential principle is that any element of a layer

depends only on other elements in the same layer or

on elements of the layer ’beneath’ it. Communication

upward must pass through some indirect mechanism”

[3] p. 69

There are four fairly standard layers. Adapting layer’s descrip-

tions from [3] p.70, they can be described from top to bottom as

follows:

I User Interface (or Presentation Layer): responsible for inter-
action with the user (or with another system)

I Application Layer: defines the jobs the software is supposed

to do and directs the expressive domain components to work

out problems. Thin layer that doesn’t contain business rules

or knowledge.

I DomainLayer (orModelLayer): responsible for representing

30

concepts, rules, and information about the business. State

that reflects the business situation is controlled andused here,

even through the technical details of storing it are delegated

to the infrastructure. This layer is the heart of business software.
I Infrastructure Layer: provides generic technical capabilities

that support the higher layers.
“Partition a complex program into

layers. Develop a designwithin each

layer that is cohesive and that de-

pends on the layers below. Follow

standard architectural patterns to

provide loose coupling to the layers

above. Concentrate all the code re-

lated to the domain model in one

layer and isolate it from the user in-

terface, application, and infrastruc-

ture code.” [3] p. 70

As a first approximation, we can map these layers onto GHC

like this:

I User Interface: code in GHC-the-program, ghci, HLS, or any

other client of GHC-the-library.

I Application Layer: “driver” code that deals with construct-

ing and executing build plans, with recompilation avoidance,

with interactive contexts, etc.

I Domain Layer: code responsible for representing concepts,

information, and rules about compiling Haskell programs:

that’s the commonly represented pipeline with its different

IRs (Haskell syntax, Core, Stg, Cmm. . .) and their transform-

ers.

I Infrastructure Layer: code supporting technical operations:

logging, dealing with file-systems (finder, interface loader,

etc.), reporting errors (panics). . .

The most important layer to isolate from the rest is unsurpris-

ingly the domain layer. It’s the heart of GHC as it contains the

business code that makes GHC useful in the first place: the code to

compileHaskell sources into something else. This layer implements

parsing of Haskell source files, type-checking, compilation into

several intermediate representations (Core, STG, Cmm, ByteCode),

code optimizations, production of machine code. . . It’s the code

documented in research papers and books.
2

2: Other than this very paper, no

one ever discusses DynFlags and

HscEnv, which is a good indication

that they don’t belong to the domain

layer.

Componentization Domain-driven design is usually applied to

Object-Oriented Programming. As such, it assumes that “objects”

are used to provide encapsulation at a finer level than layers.

Functional languages such as Haskell don’t enforce this kind

of fine encapsulation. Nevertheless we believe it is beneficial to

reach for it, as a complement to layering, which is itself a coarser

encapsulation tool.

Instead of using the term “object”, which would be misleading,
3

3: Most of our components are sin-

gleton objects.
we use the term component to refer to this level of encapsulation. A

component is a conceptual group of functions, types, type-classes.

Each component should probably be put into its own module to

avoid accidental coupling.

Components and their dependencies form a directed acyclic

graph (DAG). Layers and their dependencies also form a DAG, but

a much simpler one. As such, the layer DAG present a collapsed

view of the component DAG.
4

4: This collapsing is a graph homo-

morphism.

31

Discussingwhere to draw layer lines—does component A belong

to layer X or Y?—isn’t our main concern. Some layering must be

observable, however, otherwise it means that all the components

are entangled into the same layer. It happens to be the situation

we started with in GHC (c.f. Section 3).

In the following subsections, we discuss each standard layer

in turn from the bottom up, and for each layer we discuss more

fine-grained componentization.

4.2.1 Infrastructure Layer

The Infrastructure Layer provides services to other layers. Services

in GHC include message logging, unique number generation,

management of temporary files, file finder, etc.

To avoid tight coupling between these services and code from

other layers, a simple solution in Haskell is (1) to create datatypes

representing service components when they don’t already exist (2)

to pass them as arguments.

In the following example, we can see that function foo requires

(and probably uses) two services: Logger and TmpFs.

1 foo :: Logger -> TmpFs -> ... -> IO ...

In current GHC, many similar functions would have the follow-

ingprototypes insteadbecause services behaviormaybe configured

via command-line flags and some of their state may be stored in

the session environment:

1 foo :: DynFlags -> ... -> IO ...

2 -- or

3 foo :: HscEnv -> ... -> IO ...

A significant part of our work is to refactor functions that have

the latter interfaces (DynFlags and HscEnv parameters) into functions

with the former interface (explicit passing of each service).

This loose coupling buys us several things:

I Modularity: Different clients of the function may pass differ-

ent implementations of the services. Clients of the services

are oblivious of their implementation.

I Documention: Type signatures clearly indicate services a

function uses. If a service isn’t passed to a function, we can

be certain it isn’t used by it.

I Exposition of suboptimal interfaces: in Section 3.3.3 we’ve

presented an example of a function using a component—the

interpreter—unexpectedly. Suboptimal interfaces like this

appear for what they are if services are passed explicitly.

This becomes a nudge to refactor the code.

32

Caveat warning Passing several services to a function can look

cumbersome: why not bundle some of them into a single record

(say XYZEnv)? In our experience, there is no one-size-fits-all record

like this and the pattern is only a local maxima, instead, there is

a slightly different record best suited for each function. Thus, the

drive to bundle these services into a single record is exactly how

coupling begins. The sequence of events is:

I Services are bundled into records such as XYZEnv.

I Most of the functions which input XYZEnv use most of its

services or heavily related and thus have high coherence.

I The code base evolves by adding new functions or features;

some functions require more than what is in XYZEnv, but still

require some services that exist in XYZEnv.

I This produces an incentive to create new slightly altered

XYZEnv, or expand the existing XYZEnv. Creating more XYZEnvs

is cumbersome, and appears redundant, so the “path of least

resistance” is taken and an existing XYZEnv is extended with

whatever new fields are required for just the new functions.

I Now that XYZEnv has grown, there are two secondary effects:

First, coherence is reduced because the number of functions

which use all of the XYZEnv fields is lower. Second, there is

more incentive to pass XYZEnv around because its functionality

has expanded.

I Andnowwearrrive at a vicious cycle;more andmore services

are added into XYZEnv because it is conveniently threaded

through many functions. But it is threaded through many

functions because of the many services it provides.

This is how we ended up threading DynFlags and HscEnv every-

where and storing arbitrary values into these records!

To avoid this slippery slope, our recommendation is to pass

services explicitly as much as possible in the library. This ap-

proach is the best we are aware of because it doesn’t impede the

implementation of any other interface on top of it in the client code:
I bundled services:

foo :: XYZEnv -> ... -> IO ...

I tagless final style:

foo :: (HasLogger m, HasTmpFs m) => ... -> m ...

I effect system:

foo :: ... -> Eff ’[Logger,TmpFs] ...

As will be discussed later in Section 5, we never want to be in

a scenario where we need to rely on GHC developers suddenly

changing their behavior after many decades. Rather, we want to

shift the incentives they face every time they sit down to edit the

code. If the “path of least resistance” is far less often the enemy of

modularity, our reforms will be more durable to bit rot, and our

developer colleagues ultimately less inconvenienced.

33

4.2.2 Domain Layer

The core business of an Haskell compiler is to compile Haskell

code into machine code. All of this is essentially performed in the

domain layer. Figure 1 depicts GHC’s compilation pipeline used to

achieve this.

As discussed in the introduction of Section 4.2, layers can them-

selves be subdivided into independent components to form a DAG.

For modularity, it is particularly important to make each phase of

the compilation pipeline an independent component that can be

easily reused for other purposes, whatever these purposes may be

(c.f. “Supple design” in Section 4.3), or easily replaced.

Doing this would be a boon for research and experimentation

because changes could be precisely localized, with minimal impact

on the rest of the compilation pipeline. It would also allow other

compilers to reuse the frontend—Haskell parser down to Core or

STG—and/or the backends—Core/STG/Cmm to machine code.

GHC could become a compilation framework similar to LLVM but

for functional languages.

To achieve this, there must be very low coupling between the

phases of the pipeline. Ideally boxes in Figure 1 would represent

independent components and some arrows would represent al-

lowed coupling, depending on each box kind: IR components are

standalone; optimiser components only depend on a single IR com-

ponent; compilers depend on two IR components. The resulting

DAG is shown in Figure 2.

It turns out that phases and representations were far from being

independent in GHC. However a lot of work went into improving

this (c.f. Section 5).

ExtendedDomainLayers The compilationpipeline is unarguably

the main element of the domain layer. However it only deals

with a single compilation unit (a module). To support separate

compilation, we have to introduce more components: module

names, module imports, module interfaces, module boot files,

module signatures, etc.

All these new components don’t necessarily belong to the same

layer as the compilation pipeline for a single module. They could

all be placed a layer above, in some “extended domain layer”.

Similarly, code handling packages/units with thinning, renam-

ing, module hole instantiation, etc. could be placed in another

“extended extended domain layer”.

This kind of loose coupling would be useful to experiment with

alternative separate compilation schemes. For example, decoupling

the renamer from the extended layers by making the method to re-

solve external names pluggable could facilitate the implementation

34

of a Unison-like content-addressed model
5
for Haskell. 5: Unison’s “The big idea” page in-

troduces this well.

Currently, all these layers are unfortunately mixed into one. In

addition some concepts aren’t properly named and abstracted. For

example, we don’t have a name for the view that a unit has of

other units, which may be different from one unit to another due

to thinning and renaming of modules.

The recently introduced support for multiple home units is in-

compatible with thinning and renaming features probably because

this lack of abstractionmakes their interaction non trivial. Similarly,

most interactions between components of these extended domain

layers aren’t well specified nor checked, making bugs mentioned

in Section 3.3.2 very likely to occur.

4.2.3 Application Layer

The Application Layer uses the components of the Domain Layer

to provides higher level services. In GHC the Application Layer

is called the “Driver” and provides services such as: retrieving

dependencies between a set of modules, running passes separately

(parser, type-checker, code generation, etc.), performing interactive

evaluation. . . Many of this layer’s issues have been exposed in

subsections of Section 3, especially 3.3 about HscEnv and 3.7 about

the driver evolution over time.

The most important issue to fix is the lack of layering and

componentization. For example, it should be possible to use some

components of the application layer without ever using HscEnv

or GhcMonad. Proper componentization would make obvious the

services, the caches, and the settings each component requires.

It would also allow a client of these components that don’t need

some features (e.g. the interactive context) to totally ignore them.

Note that all this requires the Domain Layer to be free of HscEnv

first, c.f. Section 4.2.2. Otherwise components of the application

layer would inherit wrong dependencies from the components

of the domain layer they use which still have them. These depen-

dencies explain why we follow a bottom-up approach to fix these

layering issues (c.f. Section 5).

Examples of components of the application layer are:

I “downsweep”: a component that uses the header parser of

module files to generate a module dependency graph. It

should also return header pragmas for each module.

I “Haskell pipelinemanager”: a component tomanageHaskell

compilation pipelines. The domain layer provides compo-

nents performing the real work (compilation phases), but

the choice of the components to use and their composition

can be left to the application layer to do.

I “Task graph”: a component that manages a meta compi-

35

https://www.unison-lang.org/learn/the-big-idea/

lation pipeline that encompasses: Haskell compilation, C

compilation, linking, module instantiation, etc. The task graph is currently named

“module graph”. It’s another exam-

ple of an inherited non longer pre-

cisely relevant terminology. C.f. Sec-

tion 4.1

I “Interactive context”: everything needed to manage an inter-

active session similar to GHCi’s one.

Further steps include deduplicating code between features, and

separating “planning” from “executing”.

The driver is full of overlapping functionality. At the end of sec-

tion 3.2.6, we mentioned how the newly implemented “multiple

home units” overlaps with other features, but could subsume them.

Indeed, various backpack and GHCi functionality can and should

be subsumed, and multiple home units support itself can be refac-

tored to have a much stabler foundation, once componentization

is complete. This will ensure we have not only more functionality

with less code, but better tested higher quality code.

Separating “planning” vs “execution” is best approached from

two different perspectives.

The first perspective is that the driver as it exists today has

too much infrastructure-layer concerns managing concurrent jobs

mixed in and polluting the actual application-layer logic coordinat-

ing what needs to be done. The latter is planning, while the former

is used to execute those plans. As always, we want to properly

layer and keep the core logic together rather than lost in a say of

miscellaneous details.

The second perspective is different clients of the GHC library

need the same plans, but will execute them in markedly different

ways. HIE will have all sorts of data in memory and wish to

leverage that as much as possible. GHCi will be in a similar boat.

Even within “tradition” GHC-the-program, “one-shot mode” and

“batch mode” work in profoundly different ways. The best way to

think about the former is that rather than scheduling tasks within

GHC itself, the plan is returned to an external build system
6
which 6: today via Makefiles, but perhaps

tomorrow via something like GHC

Proposal 245 — Extended Depen-

dency Generation.

then invokes GHC per task. Thus, plan execution is managed by

a completely separate process, an extreme case of planning vs

execution separation.

With more execution work at least optionally left to the clients,

GHC should double down on the granularity of planning that it

currently manages. HIE implements tons of its own task planning

logic using (in-memory) Shake as an execution framework. Even if

Shake isn’t used byGHC itself, asmuch as possible of that planning

logic (and indeed likewise for any domain-layer logic) should be

deduplicated with GHC wherever possible. Planning vs execution

separation facilitates this.

Finally, one additional recommendation is to document the

API of the Application Layer and to write test programs using it.

This will unvariably make flaws obvious and will hopefully be an

incentive to fix them. That’s how one of us got into doing this work

36

https://github.com/ghc-proposals/ghc-proposals/pulls/245
https://github.com/ghc-proposals/ghc-proposals/pulls/245
https://github.com/ghc-proposals/ghc-proposals/pulls/245

in the first place, so we can testify that this method was successful

at least once.

4.2.4 Presentation Layer / User Interface Layer

The Presentation Layer is the interface between an end-user and

the rest of the Application Layer. Therefore, GHC has several

components in its presentation layer, including:GHC the command-

line program, GHCi, Haddock, HLS, HLint, and any other ghc-lib

consuming program. These components most often don’t belong

to the same codebase but they are still conceptually in the same

layer.

Most of theseUI components have to findworkarounds to exploit

the Application Layer that was designed for the GHC program

first, and extended a little for GHCi. A good example is that all

these components have to deal with DynFlags values that represent

command-line flags for the GHC program as we have seen in

Section 4.2.3.

For example, if for the GHC program it was decided that a

verbosity level —stored in the DynFlags—greater than 2 would

enable the display of A and B, there is no way for another client

to display only A, except maybe by changing the verbosity level

in the DynFlags at some specific points in the pipeline (e.g. if the

display of A and B occurs in different phases). Our recommen-

dation once again to fix this is to implement proper layering and

componentization in the Application Layer, to avoid the need for

these kinds of workarounds.

A welcome componentization in GHC’s UI layer would be to

split GHC-the-program from GHCi. Their needs are very different

and it would make for two “internal” clients more representative

of what other external clients may require from the other layers.

We now present two examples of refactoring of GHC’s UI layer

that would accomodate other clients’ needs: OPTIONS_GHC pragma

handling and error messages.

OPTIONS_GHC pragma This pragma can be used to pass command-

line flags for the GHC program that are only applied to the

module containing the pragma. As we have seen in Section 3,

this mechanism is fragile and it’s easy to find flags that are not

compatible with the global ones passed on the command-line, even

more so in GHCi.

In the current implementation a single DynFlags is obtained

by merging the global DynFlags with local DynFlags from parsing

OPTIONS_GHC. Note that the local DynFlags are a by-product of the
pre-processing phase of each module, and are threaded through

the rest of the pipeline alongside the code itself.

37

Conforming to our recommendation above, we propose not to do

this. Instead, components of theUI Layer such as theGHCprogram

and GHCi would be responsible for interpreting pragmas—that

are returned by the preprocessing phase and that they support—in

order to setup the rest of the build plan for each module.

As such, a concrete first step is to provide an abstract syntax

and a parser for GHC’s command-line interface (CLI) parameters.
7

7: #20730 — Refactor command-

line options handling (DynFlags)
After “downsweep” and after parsing of the OPTIONS_GHC pragmas,

each module can be paired with some CLI syntax value. Finally,

we need two CLI syntax interpreters—one for GHC and another

for GHCi—that check that these module specific CLI parameters

make sense and can be combined with the other ones (global

and/or other module specific ones). Similarly in GHCi to support

dynamically modified CLI parameters: parse, validate with the

current state, act.

Generalizing this approach to other pragmas (OPTIONS_XYZ), other

programs could support GHC’s pragmas (reusing GHC’s CLI

parser and abstract syntax), their own pragmas, or no pragma at

all.

Currently GHC’s header parser—used by “downsweep”—treats

LANGUAGE xyz pragmas as syntactic sugar for OPTIONS_GHC "-Xxyz"

pragmas. As most clients will want to deal with these pragmas,

they should probably be returned independently as proper ADT

values instead. These values could in turn be converted into the

“-X...” stringy form, but only by clients that require it.

Error messages Until recently, warning and error messageswere

produced below the Presentation Layer. This design meant that

the Presentation Layer couldn’t decide what message to show for

a given error/message, except by matching on string messages

themselves (another workaround). A typical example is that the

Presentation Layer can’t easily adapt the language of a message,

which is a useful feature for responding to the user locale.

We kicked-off the work that consists in making aformentioned

layers return warnings, errors, and hints as algebraic datatype

values (a5aaceec). This work was then continued by Alfredo Di

Napoli
8
. 8: Status is tracked on GHC’s wiki

Note that it is still possible to convert these values into default

string messages. Separation of concerns—here reporting an error

to client code vs reporting an error to a human user—once again

adds possibilities without impeding existing use cases.

4.3 Supple Design

To avoid paraphrasing, here is the description of Supple Design
extracted from [3] (pp. 243–245):

38

https://gitlab.haskell.org/ghc/ghc/-/issues/20730
https://gitlab.haskell.org/ghc/ghc/-/issues/20730
https://gitlab.haskell.org/ghc/ghc/-/commit/a5aaceecaa04ce7ea5bade6eb96c0d129109c15a
https://gitlab.haskell.org/ghc/ghc/-/wikis/Errors-as-(structured)-values

“As a program evolves, developers will rearrange and

rewrite every part. They will integrate the domain ob-

jects into the application and with new domain objects.

Even years later, maintenance programmers will be

changing and extending the code. People have to work

with this stuff. But will they want to?

When software with complex behavior lacks a good de-

sign, it becomes hard to refactor or combine elements.

Duplication starts to appear as soon as a developer isn’t

confident of predicting the full implications of a com-

putation. Duplication is forced when design elements

are monolithic, so that the parts cannot be recombined.

[. . .] When software doesn’t have a clean design, devel-

opers dread even looking at the existing mess, much

lessmaking a change that could aggravate the tangle or

break something through an unforeseen dependency.

In any but the smallest systems, this fragility places a

ceiling on the richness of behavior it is feasible to build.

It stops refactoring and iterative refinement.

To have a project accelerate as development proceeds—

rather than get weighed down by its own legacy—

demands a design that is a pleasure to work with,

inviting to change. A supple design.

[. . .] When complexity is holding back progress, hon-

ing the most crucial, intricate parts to a supple design

makes the difference between getting sucked down

into legacy maintenance and punching through the

complexity ceiling.”

We claim that GHC lacks a supple design. As an evidence of

this, many interesting developments require the use of GHC forks,

which are the paramount of code duplication:

I Cross-compilers: Eta (JVM), GHCJS (JavaScript), Asterius

(WebAssembly)

I Alternative backends: Intel Labs Haskell Research Com-

piler [10], External STG interpreter [11]

The lack of modularity is presumably one of the main reasons

why these forks exist. It matches our direct experience with GHCJS,

which requires changes to unabstracted parts of GHC (e.g. linker

handling), which are—sadly—easier to implement by slightly

modifying duplicated GHC code.

The lack of modularity isn’t the only reason why working with

GHC doesn’t provide a supple design experience.

I Building GHC takes a very long time: bootstrapping needs

to build GHC twice; by default other packages such as Cabal

and Haddock are built too

39

I Constraints on boot libraries: the set of libraries that can be

used into GHC’s codebase is restricted.

I GHC’s build system is complex, slow, and poorly docu-

mented. It isn’t well-integrated with usual Haskell build

tools (stack, cabal-install, Nix), requires specific learning,

and has its own set of bugs. It is difficult to modify to adapt

to new needs.

I GHC’s CI is flaky: CI for merge requests take a long time and

may fail arbitrarily on some platforms

Asa consequence, it is oftenmuchmoreproductive andenjoyable

to work outside of GHC. Some of the forks above are only used to

make the extraction of intermediate forms (external Core, external

STG) easier. All the interesting work then happens in a separate

Haskell project that doesn’t face GHC’s issues.

GHCmay not be the best vehicle for research that it used to be. It

is difficult, however, to quantify the amount of research that could

have relied on GHC but that didn’t because of its issues. Taking for

example the Unison language [12] whose main contribution is that

functions are content-addressed (hash of the RHS), we believe that

Haskell could have been used as a source language to experiment

with this idea, but we also believe that it would be utterly difficult

to reuse GHC’s components to achieve this currently.

We hope that GHC’s modularity will be the first step towards

a more supple design. Improvement of GHC’s build system and

build process is out of the scope of this paper. However interested

readers can read #20748, #17191, #19209, and issues marked with

the Hadrian label.

40

https://gitlab.haskell.org/ghc/ghc/-/issues/20748
https://gitlab.haskell.org/ghc/ghc/-/issues/17191
https://gitlab.haskell.org/ghc/ghc/-/issues/19209
https://gitlab.haskell.org/ghc/ghc/-/issues?label_name=hadrian

"Haskell"
(full Haskell syntax)

.hs .lhs .hs-boot.hsc

Parser

"Core"
(System FC, high-level types, functional)

"Shared term graph (STG)"
(functional, representation types only, ANF)

"C-- (Cmm)"
(imperative)

Haskell to Core
"desugarer"

Type checker,
renamer

Core
Optimizer

Core to STG

STG to C--

ASM

C-- to ASM

C code

C-- to C

LLVM IR

C-- to LLVM IR

STG
Optimizer

C compiler LLVM

C--
Optimizer

Figure 1: GHC’s compilation

pipeline.

Blue boxes: code representations

("syntaxes").

Red boxes: compilers from one

representation to another.

Green boxes: code transformer-

s/checkers that work on a single

representation.

41

"Haskell"
(full Haskell syntax)

Parser

"Core"
(System FC, high-level types, functional)

"Shared term graph (STG)"
(functional, representation types only, ANF)

"C-- (Cmm)"
(imperative)

Haskell to Core
"desugarer"

Type checker,
renamer

Core
Optimizer

Core to STG

STG to C--

ASM

C-- to ASM

C code

C-- to C

LLVM IR

C-- to LLVM IR

STG
Optimizer

C--
Optimizer

Figure 2: Dependencies between

components composing GHC’s com-

pilation pipeline.

42

5 Method

Having discussedwhat the problems are, andwhat we hoped to do

about them, it serves to discuss about exactly howwe envision that

work will actually happen. The main constraint to consider was

that these challenges were always too difficult to be addressed in a

single massive patch. Thus, most of our methodological decisions

relate in some fashion to time. We need an approach that allows

us to work little by little, not relying on other GHC developers to

closely follow our efforts.

Layering and componentization are at the core of ourmodularity

effort (c.f. Section 4.2). They can be achieved in three steps:

1. Introducing a module hierarchy to represent layers and

components (Section 5.1)

2. Removing accidental coupling between components (Sec-

tion 5.2)

3. Removing undesirable coupling between components (Sec-

tion 5.3)

We also need good reasons to believe these improvements will

be to some extent self-sustaining, so our work won’t immediately

bit-rot once the initial cleanup is finished (Section 5.4).

5.1 Introducing a module hierarchy

Task #13009 — Hierarchical Module Structure for GHC

Status Done
“Modules give people two views of

the model: They can look at detail

within a module without being over-

whelmed by the whole, or they can

look at relationships between mod-

ules in views that exclude interior

detail.

The modules in the domain layer

should emerge as meaningful part

of the model, telling the story of the

domain on a larger scale.” [3] p. 109

Hierarchicalmodules have been supported inGHCHaskell since

2001 (6dad6315) and are a useful domain modeling tool, especially

for complexHaskell projects. See for example themodule hierarchy

of the Agda compiler.

However, probably by inertia, almost all modules of the GHC

library were top-level modules. Prefixes were used in some cases

to distinguish modules belonging to different components of the

model, but it wasn’t done consistently.

As such it was almost impossible to enforce layering and com-

ponentization at the module level because we couldn’t even state

a rule such as “modules of the Domain Layer mustn’t import

modules of the UI or Application Layers” because we couldn’t

identify which layer a module belonged to.

Our first work was to introduce a module hierarchy to make the layering
and componentization apparent in the module structure of GHC. This
module refactoring started in GHC 8.10 and culminated in GHC

9.0.

From the 9.0 release, we havemademost components on Figure 1

have their own module hierarchy. For example GHC.Stg.* modules

43

https://gitlab.haskell.org/ghc/ghc/-/issues/13009
https://gitlab.haskell.org/ghc/ghc/-/commit/6dad6315d07e715151164e3202a98110a641218a
https://hackage.haskell.org/package/Agda-2.6.2.2

Component Nickname Module Directory

HsToCore Desugarer Desugar deSugar

CoreToStg ? CoreToStg stgSyn

StgToCmm codegen StgCmm codeGen

CmmToAsm native codegen AsmCodeGen nativeGen

CmmToC ViaC PprC cmm

StgToByteCode ? ByteCodeGen ghci

Table 3: Terminology for compila-

tion phases in GHC 8.8

implement the STG syntax and its related code; modules in GHC.

StgToCmm.* implement the STG to C-- pass; etc. Similarly, modules

composing the Application Layer have been confined in GHC.Driver

.* hierarchy.

This hierarchical approach makes clear which modules belong

to each component/layer. It was also an opportunity to fix up the

terminology used to refer to some components (c.f. ubiquitous

language, Section 4.1). As an example, Table 3 shows the terminol-

ogy used in GHC 8.8 for compiler phases before these changes.

In comparison the new terminology ("Component" column) is

consistent and follows the principle of least surprise.

Fixing Layering Violations After we introduced a module hier-

archy the codebase was still left with a lot of layering violations:

modules importing other modules from an upper layer or from a

sibling component that they should be independent of.

“It is a truism that there should be

low coupling between modules and

high cohesion within them. [..] It

isn’t just code being divided into

modules, but concepts. There is a

limit to how many things a person

can think about at once (hence low

coupling). Incoherent fragments of

ideas are as hard to understand as

an undifferentiated soup of ideas

(hence high cohesion).” [3] p. 109

We fixed the easiest layering violations that only required split-

ting some modules and/or moving statements from one module

to another. Some of the remaining ones are described in Section 3.2

and 3.3 (DynFlags and HscEnv leaking from UI and Application Lay-

ers into the Domain Layer) and were more difficult to fix. Some of

them are still not fixed at the time of writing!

Most of these layering violations have not been introduced by

design but accidentally. We now explain the approach we follow

to remove them.

5.2 Removing accidental coupling

A lot of accidental coupling and layering violations occur because

of the use of a shared data structure between unrelated components

of the compiler. In Section 3wepresented several of these datatypes:

HscEnv, DynFlags, Hooks, etc. A method to avoid this coupling is to

use component-wise configuration datatypes.

5.2.1 Component-wise configuration

Task #17957 — Avoid direct access to compiler state

Status In Progress

44

https://gitlab.haskell.org/ghc/ghc/-/issues/17957

Listing 10: Cmm configuration as

part of DynFlags refactoring. Note

that we have removed field com-

ments for formatting. See !7199.

1 data CmmConfig = CmmConfig
2 { cmmProfile :: !Profile -- ^ Target Profile
3 , cmmOptControlFlow :: !Bool -- ^ ...
4 , cmmDoLinting :: !Bool
5 , cmmOptElimCommonBlks :: !Bool
6 , cmmOptSink :: !Bool
7 , cmmGenStackUnwindInstr :: !Bool
8 , cmmExternalDynamicRefs :: !Bool
9 , cmmDoCmmSwitchPlans :: !Bool
10 , cmmSplitProcPoints :: !Bool
11 }

The basic idea of component-wise configuration is that we

should treat each component (or phase) of the model as if it was

an external program: its interface must be well-defined with a

component-specific set of options (configuration) and no access

to some global shared mutable state. The handshake between

some upper level configuration (e.g. DynFlags) and the component-

specific configuration may now happen in some upper layer: the

component itself is only aware of its own configuration. No rocket science here: We don’t ex-

pect C compilers to support being

passed all of GHC’s options and to

make sense of them to know how to

compile C files produced by GHC

with its C backend. Similarly we

shouldn’t expect its “internal com-

pilers” (e.g. CmmToAsm) to support this

either.

As an example, let’s consider the Cmm phase. In the usual pipeline

it takes its input from the StgToCmm phase and its output feeds one of

the CmmToAsm, CmmToLlvm, CmmToC, or the envisioned CmmToWasm phase.

But to be truly reusable, the Cmm phasemustn’t know anything about

the provenance and the expected usage of the Cmm it manipulates!

As such we’ve introduced a specific configuration datatype for

the Cmm phase (Listing 10). To keep the existing behavior we’ve also

introduced a Cmm configuration initialization function (Listing 11)

in the Application Layer (GHC.Driver.Config.Cmm).

We can see that this new function sets some options depending

on the selected downstream phase (backend dflags), some user

specified options (gopt Opt_*), and someglobalGHCsettings (target

platform). These information were directly fetched by the Cmm

component before, making DynFlags the only interface to configure

it (cf Section 3.2).

To recap, our process is (1) to isolate components by creating a

configuration record for each of them and (2) to create functions to

initialize them for GHC’s use case, typically a projection from other

DynFlags or HscEnv. Note that other clients of the components don’t

have to use these functions and can initialize the configuration

records as they see fit.

For components of the Domain Layer, we have picked the con-

vention of putting configuration initialization functions in the

Application Layer (GHC.Driver.Config.*modules). As such, it makes

some layering violations blatant, which is good. For example,

at the time of writing we can notice that GHC.Cmm.Parser imports

45

https://gitlab.haskell.org/ghc/ghc/-/merge_requests/7199

Listing 11: Cmm phase configura-

tion init function in the Application

Layer as part of the DynFlags refac-

toring. See !7199.

1 initCmmConfig :: DynFlags -> CmmConfig
2 initCmmConfig dflags = CmmConfig
3 { cmmProfile = targetProfile dflags
4 , cmmOptControlFlow = gopt Opt_CmmControlFlow dflags
5 , cmmDoLinting = gopt Opt_DoCmmLinting dflags
6 , cmmOptElimCommonBlks = gopt Opt_CmmElimCommonBlocks dflags
7 , cmmOptSink = gopt Opt_CmmSink dflags
8 , cmmGenStackUnwindInstr = debugLevel dflags > 0
9 , cmmExternalDynamicRefs = gopt Opt_ExternalDynamicRefs dflags
10 , cmmDoCmmSwitchPlans = not . backendSupportsSwitch . backend
11 $ dflags
12 , cmmSplitProcPoints = (backend dflags /= NCG)
13 || not (platformTablesNextToCode ...)
14 || usingInconsistentPicReg
15 } where ...

GHC.Driver.Config.StgToCmm which is clearly a layering violation. In

comparison, a wrong dependency to a sibling component of the

same layer (e.g. GHC.Cmm.Parser importing GHC.StgToCmm.*) is more

difficult to detect without proper tooling.

5.2.2 How to proceed: harder then easier

Writing these refactors feels like untangling GHC. And like the

real-life counterpart of untangling a knot, progress often starts

slow until various milestones are reached and the work gets easier.

At the beginning, it was often very daunting to even decide

where to begin to start untangling, with few DynFlags parameters

being obviously and simply more information than was needed.

The biggest obstacle was probably pretty-printing. As discussed in

section 3.2.4, DynFlags was used for pretty printing. And because

the unsafe global DynFlags was so clearly bad, it really was better

to thread otherwise-“overkill” DynFlags than use it. Between actual

user-facing diagnostics (errors and warnings) and more internal

assertions, pretty-printing was ubiquitous, and so this was the

most frequent source of DynFlags that looked like they could be

removed, but couldn’t in fact be so easily.

Thankfully, Sylvain has already slayed that monster of pretty-

printing, removing DynFlags from the pretty-printing internals

altogether in addition to reducing the global state to the three

booleans as already mentioned. With that, we are now ready to

move to a new state of more rapid progress.

Jeff did some dependency analysis, and #17957 now contains

a detailed road map of which components need to be converted

to CompConfig in dependency order. That last bit is crucial, because it
means someone can grab a check-boxed task, and work on just that

component with reasonable confidence they will not be forced to

go on a tangent, unraveling a much longer “thread” of separate

46

https://gitlab.haskell.org/ghc/ghc/-/merge_requests/7199
https://gitlab.haskell.org/ghc/ghc/-/issues/17957

components whose lack of their own CompConfigs is blocking the

fixing of the original component in question.

With this new road map, we are excited to be able to onboard

more volunteers to join us in our efforts, and thus increase progress.

We are excited to do that!On that front,we’ve been eagerly planning

a 2022 Summer of Haskell project
‡‡

after a perspective mentee

expressed interest
§§

in our work.

5.3 Removing undesirable coupling

Tasks Varied and not led by us, see Section 5.3.1 below

Status In Progress

The third step consists in removing coupling between compo-

nents that we deem undesirable. Compared to Section 5.2, this

coupling isn’t present by chance but because a component really

uses a feature of another. Still in some cases we want to decouple

them to allow for greater modularity and code reuse.

As we mentioned above, most of our components are similar

to “singleton objects”: there exists only one of each. However in

some cases we would like them to behave more like standard

objects so that the client code can pass another one as long as it

has the appropriate interface. In Haskell, this translates to using

type-classes or datatypes representing component interfaces.

As an example, if the Renamer handles the execution of Tem-

plate Haskell splices, we don’t want it to depend on the whole

compilation pipeline plus the interpreter. Instead we want the

Renamer to take as argument a function whose type is something

like Splice -> TcRn HsSyn. Clients of the Renamer are responsible

for plugging-in an appropriate splice interpreter. The benefit is

effective loose coupling: one could easily reuse the Renamer with

a totally different splice interpreter.

The same kind of thinking is needed for every component: does

it really need to know about that other component, or should it be

programmed against an abstract interface.

5.3.1 Related GHC projects

We remain focused on the initial steps — pushing through the

“grunt work” of decoupling where the path ahead is most clear.

There is a lot inertia to be overcome, along with pessimism that

GHC or “production tools” in general could ever be implemented

in an elegant way, and so we think it is better for us to focus on

‡‡ https://github.com/haskell-org/summer-of-haskell/issues/158
§§ https://github.com/haskell-org/summer-of-haskell/issues/143#
issuecomment-1089402865

47

https://github.com/haskell-org/summer-of-haskell/issues/158
https://github.com/haskell-org/summer-of-haskell/issues/143#issuecomment-1089402865
https://github.com/haskell-org/summer-of-haskell/issues/143#issuecomment-1089402865

initial milestones and getting them done rather than planning far

out past any frontier of certainty.

Nonetheless, there are other ongoing GHC projects that could

indeed be classified as “removing undesirable coupling”. We’re

very happy they exist, andwe look forward to our efforts “merging”

with theirs down the road.

Structured errors As mentioned in Section 4.2.4, structured

are a laudable and classic attempt to remove presentation layer

concerns from the domain layer where they don’t belong. Recently,

the Haskell Foundation has taken on an official capacity to steer

this work, largely due to the needs of HLS, which as a separate Haskell Foundation Tech Proposal

24
application has its own presentation layer, and thus wants to

present errors differently. We fully support this project and are

very happy the Haskell Foundation has agreed to push it forward.

The diagnostics
1
users most care about are in the early pipeline 1: a word for warnings and errors,

both are being so-converted
stages, especially the renamer and type checker. Per our depen-

dency analysis, these will be some of the last components to be

purged of DynFlags and HscEnv. That means the structured diagnos-

tics work will be converting code that could easy use unstructured

diagnostics again if code reviewers didn’t care.

However, once our modularization work reaches those compo-

nents, it could well be that the structured diagnostics are the only
sort that are possible! This would especially true if we factored out

the entire SDoc / pretty-printing infrastructure into a separately li-

brary to be only used by text-based presentation layers. This would

preclude code reviewers from having to be vigilant as the path of

least resistance
2
for contributors now strongly favors structuring 2: a topic we will return to in Sec-

tion 5.4
any new diagnostic that is needed.

Trees That Grow Trees that grow aims to make the abstract The GHCWiki has a page on Trees

That Grow, but it needs to be

brought up to date. The “TTG” la-

bel in the GHC Issue tracker does

not offer a good overview, but at

least has the advantage of showing

information that is up to date.

syntax / intermediate representation data types more faithful to

the compiler pipeline stages that operate on them. Replacing a

single AST that struggles to accommodate multiple pipeline stages

with multiple variants is very analogous to replacing DynFlagswith

component-wise CompConfig records, and thus we support it for all

the same reasons.

Trees That Grow initially has initially been more about repre-

senting the invariants of each compiler phase, and thus avoiding

partial code or invalid states. These are benefits our modularity

work also strives to offer, but nonetheless is a distinct goal. After

that, however, what remains is #19932 — Reduce AST & parser

dependencies , which references the CountDepsParser test we men-

tioned in the introduction (Section 2) along with an analogous

CountDepsAst. This, on the other hand, is squarely modularization

work. The goal here is to allow factoring out key data structures

48

https://github.com/haskellfoundation/tech-proposals/pull/24
https://github.com/haskellfoundation/tech-proposals/pull/24
https://gitlab.haskell.org/ghc/ghc/-/wikis/implementing-trees-that-grow
https://gitlab.haskell.org/ghc/ghc/-/wikis/implementing-trees-that-grow
https://gitlab.haskell.org/ghc/ghc/-/issues?scope=all&state=all&label_name[]=TTG
https://gitlab.haskell.org/ghc/ghc/-/issues?scope=all&state=all&label_name[]=TTG
https://gitlab.haskell.org/ghc/ghc/-/issues/19932
https://gitlab.haskell.org/ghc/ghc/-/issues/19932

like ASTs (with any code operating them being purely optional

to also factor out), and that is the purest example of making the

domain layer reusable.

As with structured errors, once our efforts reach those key we

should benefits in access of each project alone. With both the core

data pipeline stages operate on, and configuration, services, and

other “auxiliary” inputs all made modular, these core pipeline

stage components would be well on their way to becoming just as

nicely decoupled from their dependency as their inputs are.

Driver features and consolidation Matthew Pickering has initi-

ated a bunch of work on overhauling the driver. We characterize

this work as good initial steps in the process of separating planning

and execution and also making the plans more fine-grained, two

goals discussed in section 4.2.3. We discuss this work, and some

antecedents, in grater detail in the appendix section 8.

5.4 Maintenance

It would be a real shame if, after all our hard work, GHC immedi-

ately started regressing and becoming more monolithic again. We

are not so concerned about this, because the Haskell ecosystem

writ large demonstrates that modularity is “sustainable”, but it is

still good to discuss the possible reasons why that is and make

sure they also apply to our planned end state.

Make good outcomes easy Developers are humans, and humans

are apt to take the “path of least resistance”, all things equal. The

heart of any approach to be a strategy of making modular and

otherwise good code the natural and easy way to do things as

much as possible, conserving the efforts of those authoring and

reviewing changes alike. All the facets below of how we propose

modularity will sustain itself are oriented around basic fact.

5.4.1 Better continuous integration

GHC’s build systemand continuous integration (CI) have long been

a rather infamous, slowing down development by either being

hard to understand, extremely fragile, or both. This frustrates

developers and exhausts their patience. In particular, any patience

for selfless morsels of effort to improve GHC in passing will be

sucked away as getting anything merged at all becomes so much

more arduous.

It’s best to demonstrate this with an example, and one that

implicates one of us lest anyone think we are trying to castigate

the behavior of others obliquely. In the appendix section 8 we will

49

mention how in 2113a1d6 John didn’t rename ModuleGraph when

he ought to. In fact, the MR previously contained the rename but

then it was removed. This is because due to various testing fiddly

bits the MR took forever to get totally correct, and thus had to be

rebased many, many times. By keeping the testing, John would

have not only made much more work for himself, but also more

work for various coworkers who took turns being assigned to the

queue of open PRs to get them shepherded along. The extra churn

just wasn’t worth the rename.

This illustrates a funny dual hazard in the vein of the “Scylla

and Charybdis” myth. On one hand, if CI is too lax, making

large changes is off-putting because the risk of accidental mistakes

slipping by, and, worse, the pain of encountering more such things

if one tries to bisect the version control history later. On the other

hand, if CI is slow, or stringent but with many false positives,

making large changes is again off-putting because the risk of

“tripping alarms” for silly reasons, and the relatively slow debug

cycle of fixing them.

Both these excesses strongly steer developers away from “custo-

dial”work. Given the general pain of development, the path of least

resistance becomes strictly “touch as little code as possible”, rather

than a balance between keeping changes minimal but keeping the

design simple.
3
Conversely, once CI is improved, we hope develop- 3: While we and [3] especially em-

phasize tech debt over timemaking

code bases hard to understand, there

is still some cost imposed on the in-

dividual developer making a desta-

bilizing change when they try to de-

bug their work. When the accumu-

lated costs dwarf the cost of another

messy change, projects are in poor

shape.When the initial state is clean-

liness and beauty, this self-imposed

cost should be more apparent.

ers will welcome the ability to domore “custodial” work, or at least

take more care to not “regress” in overall cleanliness. We hope this

will lead to a GHC to a higher standard of quality. Furthermore,

It is both easier and more rewarding to keep clean good clean

than prevent messy code from merely getting worse. We hope that

higher standard of quality will come to be be internalized as not

something exceptional, but merely raised standards of the level of

“good working order” GHC ought to be kept at without ongoing

additional effort. Naturally, we expect such a higher standard to

include preventing our work from bit-rotting.

The Haskell Foundation has recently committed to supporting Haskell Foundation Tech Proposal

18
GHC get better CI, and we are strongly supportive of this effort

and excited about the benefits of reversing this long-time trend of

a difficult developer experience.

5.4.2 Design that maintains itself

Communicating intent via “normal forms” So much of organiz-

ing large collaborative projects involves coordinating the design

between many participants. GHC has many notes today, which are

an excellent resource for readers of the code, placed or referenced

right near the code which inspires questions. But they are better

at explaining awkward or confusing things than laying forth how

code ought to be.

50

https://gitlab.haskell.org/ghc/ghc/-/commit/2113a1d600e579bb0f54a0526a03626f105c0365
https://github.com/haskellfoundation/tech-proposals/pull/18
https://github.com/haskellfoundation/tech-proposals/pull/18

Once code is modularized so components are only passed the

resourcing and configuration we need, those components begin

to take on a normal form of sorts. There is no more parameters

to remove, or results to return. The code might also be slightly

more general than its extant call sites need, but this is OK. We

can think of this as casting off “artificial” limitations, rather than

overgeneralizing past natural limitations.

We posit code like this is what most Haskellers are used to and

what they like to see. For example map could be called “overkill”

because it will never be called with arguments more than a small

portion of the function space. But it is clearly more natural to write

map than try to, e.g. defunctionalize for every function argument

that happens to exist today.

Once a bit of code is reaches those ideals, it is closer to being

“finished” andperhapsmore stable. If new featurework creates new

demands on the implementation, components might even already

support those futures via the aforementioned excess generality.

We want it to be easier to take advantage of generality and

preserve modularity than regress and introduce more couplings.

Just as we’ve shown
4
with the evolution of pretty-printing in GHC 4: our anchoring story throughout

the first major section of this paper,

section 3.

in particular, halfway-to-omnipresent DynFlags and HscEnv are very

tempting to start using in more places until they are back to being

omnipresent once again. Conversely, a bunch of CompConfig records

which are not used more than once do not create this perverse

incentive.

Overall, library code has a way of just “falling into place” via

the separation concerns whereas executable code often evolves

meandering ways, never quite settling down. We view our work as

completing the job of making GHC a “real library”, and not just a

glorified executable with the “Main“ module lopped off. We thus

think this project will unlock those benefits.

Composition over configuration This slogan’s origins are unclear These two blog posts

https://clojurefun.

wordpress.com/2012/08/17/

composition-over-convention/

https://johno.com/

composition-over-configuration

seem to help create.

but is as useful as catchy, in order to view the domain-driven design

lessons from a perspective. Suppose one not following domain-

driven design, but instead letting new UI/boundary requirements

dive development. Suppose also that those boundary requirements

are conditional, for example, like language extensions. It is likely

that those configuration parameter will end up “worming” their

way into domain concepts, obscuring their meaning in addition to

entangling layer.

Conversely, imagine once the domain concepts have freed from

the UI layer, and polished their own right. Instead of threading

configuration parameters all the way down, they should increas-

ingly instead just reflect how underlying less-configurable (or even

configuration-free) domain objects are composed together. Indeed,

51

https://clojurefun.wordpress.com/2012/08/17/composition-over-convention/
https://clojurefun.wordpress.com/2012/08/17/composition-over-convention/
https://clojurefun.wordpress.com/2012/08/17/composition-over-convention/
https://johno.com/composition-over-configuration
https://johno.com/composition-over-configuration

our trying to separate “planning vs execution” in the driver as

discussed earlier in section 4.2.3 is but an example of this concept.

This is the key of composition over configuration — small,

modular domain concepts that can be composed in many different

ways can achieve as much flexibility of purpose as configurable

large monoliths.

The existing literature doesn’t mention this asmuch, but this also

directly relates to parametricity and free theorems[13]. Large compo-

nents with complex configuration have a huge space of inputs that

makes reasoning about them very hard. Small components that

prefer more abstract inputs (higher order functions, type variables)

conversely can be well understood quite easily.

Earlier, we discussed the example of map versus a list-processing

function that took an defunctionalized input. It is very easy to

see that map is superior, and one shouldn’t replace it with the

second version that be aware of all the places or ways it applied,

non-compositionally. The challenge is rather starting with the

second version, and then trying imagine the map it wants to be. It

is very hard to do this all at once, especially as one must remain

vigilant against the temptation to have too much fun and design

a bad abstraction. But by chipping away at non-modularity and

waiting for “boring” abstractions to reveal themselves as obvious

in hindsight, one can do this more safely.

One can view our efforts to make per-component configurations

as just a first preparatory step in this longer process,which ismerely

getting rid of entirely unused parameters with per-component

configuration records. With the “extraneous noise” cleared away,

one can then try to further refine domain-layer concepts to reduce

the remaining parameters. Library like bound show the ideal,

where language implementation domain concepts are whittled

down into reusable abstraction that are extremely composable with

no need for any configuration. The challenge is to do the same

with the components of GHC.

AGHChollowedout into just a thin conglomeration of industrial-

strength reusable libraries would be the ultimate testament to

Haskell’s philosophy, and a huge benefit to industrial and research

applications alike.

6 Conclusion

With this paper we have tried to convey that some domain-driven

design concepts are applicable and beneficial to functional lan-

guages, even strongly typed ones like Haskell. Types don’t replace

proper design or GHC would have been modular to begin with.

We expect this modularization effort to be beneficial to Haskell

52

https://hackage.haskell.org/package/bound

tools developers using GHC. We also hope it will permit research

to be conducted more easily by allowing effort concentration on

the modification of a single component and reuse of all the other

ones. Examples includes:

I new or finally well integrated backends: JavaScript, Wasm,

JVM, Grin. . .

I different drivers: implement a Unison like driver for Haskell,

explore automaticallyprofiledguidedoptimizationofCore. . .

I new or improved frontends: better debugging tools relating

intermediate representations and source language (replacing

the use of dump files)
1
. . . 1: That’s what one of us was work-

ing on five years ago, work that was

put on hold to fix the GHC API first

(demo link)

We believe this experience report about GHC can also be useful

for other projects so that theydon’t reproduce somedesignmistakes

that were made. It’s also an invitation to consider applying some

domain-driven design concepts if your project also suffers from

flaws similar to those exposed in this paper.

7 Appendix: Related work

We have strived to put facts before opinions regarding the specifics

of GHC. Still, it can be useful to note that the broader themes and

narratives of our analysis do have much precedent, both with other

long-lived software in general, and other compilers in particular.

Witnessing other projects struggle with the same challenges can

help sharpen our diagnosis of what is wrong here with GHC.

Witnessing other projects surmount those challenges can give us

hope that we can do the same.

7.1 Related GHC projects

We are happy to say making GHC modular should complement

other GHC projects currently in progress. These are discussed in

the relevant sections, so we just include a glossary of references to

those sections below.

Structured errors Discussed in section 5.3.1.

Trees That Grow Discussed in section 5.3.1.

Better Continuous Integration Discussed in section 5.4.1.

Improving the driver Alluded to in section 5.3.1, and then dis-

cussed more fully in section 8.

7.2 IDEs vs batch compilation

The “Language Server Protocol” that HLS uses to interface with

many different editors is just 6 years old, but has taken our world

of increasingly many languages and editors by storm. It has rightly

been called a revolution [14], as good IDE support went from

53

https://www.youtube.com/watch?v=sPu5UOYPKUw

being deemed a luxury to being expected by users. This has

caught many traditional batch compilers off guard—especially

those which didn’t previously do something like GHCi. After

all, for all the messiness of implementation of GHCi that we’ve

described, at least its existencedidmean thatwewere already aware

that batch compiling wasn’t the only use-case for our language

implementations out there.

7.3 Rust

Perhaps the best story for us is the experience of Rust. Because

Rustc was not written with non-batch usage in mind, the first

prominent language server for Rust was RLS. RLS did not attempt

to do anything fancy reusing the compiler code base, and instead

relied on a combination of shelling out to Rustcwith JSON standard

streams, and using a heuristic implementation of code completion

called “Racer”. Later, however, rust-analyzer was created to do

things the “right” way, always leveraging rustc as much as possible.

Rust-analyzer, however couldn’t come into prominence until rustc

was sufficient re-architected to make this approach viable. And,

inverting the usual relationship, sometimes it uses a heuristic

approach where rustc is not yet well architected enough, whereas

RLS can fall back on the correct but slow batch mode JSON output.

For a few years the two language servers competed, but finally in

2020 a Rust RFC [15] (analogous to our GHC proposals but broader

in scope) was written to anoint rust-analyzer RLS’s successor and

the sole official language server. This RFC, and related documents it

links, are an absolute goldmine of experience comparable to ours. It

specifically mentions the both the need and difficulty of refactoring

the older compiler, the inherent tension between the batch and

IDE use-cases (especially with more advanced optimizations) and

“library-ification” as the onlyway to support bothuse-caseswithout

compromise.

7.4 HLS perspective

We’vementionedHLSmultiple times, butwhat do theHLS authors

actually have to say? In [16], prior to the GHCIDE–HIE merge

creating today today’s HLS, Neil Mitchell does have a few slides

making note of annoyances caused by GHC. They are part of what

we want to fix. The use of Shake to handle data dependencies

and caching corresponds to the Infrastructure Layer in [3] p. 70’s

layer concept breakdown. In fact, the generalization of Shake to

also work in memory for the IDE’s sake could be conceived as

generalizing Shake’s own Infrastructure Layer.

54

7.5 Greenfield experiments

Frustrated with the difficulties in reforming existing legacy lan-

guage implementations, some new projects have emphasized im-

plementation architecture as priority / point of differentiation

rather than just focusing on language design alone.

A first example is the “Sixten” compiler. It has a document

describing its architecture [17], which nicely lays out the batch vs

IDE problem, and a Domain Layer–Infrastructure Layer division of

labor with a library called Rock. Rock is inspired in part by Shake

and plays the same role as Shake in HIE-Core/GHCIDE/HLS.

A second example is “Unison” [12]. Unison aims to innovate

on a number of fronts, but these include totally rethinking the

Infrastructure Layer to dispense with the usual assumptions about

source code being stored as text, in mutable files, etc. To handle

richer and finer-grained infrastructure concerns while also tackling

more domain-specific ones like improved incrementality, Unison

must keep the infrastructure and Domain layers at least somewhat

separate to reduce complexity.

7.6 Misc

GHC’s Architecture One that wonders what other projects share

GHC’s challenges might also wonder when has GHC’s architecture

has been discussed before. The classic example, merely cited off-

hand in the main body of this paper, is the two Simons’ chapter on

GHC contributed to [9].

That document is broader in scope, but the sections “How to

KeepOnRefactoring”, and “CrimeDoesn’t Pay” in particular relate

strongly to what we are writing about here. Based on them, one

can argue that even though we are critiquing the current state of

GHC, we are also carrying on some older traditions of cleaning it

up.

TechDebt inGeneral EdwardZ. Yang, the onetimemaintainer of

Cabal and implementer of Backpack, has a humorous blog post [18]

were he advocates stepping outside the confines of Conway’s law

to fix upstream problems rather than endlessly hack around them.

We do relate, as the three of us authors didn’t first approach GHC

with our eyes on this work, but rather felt compelled to do so when

the annoyances of working with the current interface become too

much to ignore.

This blog post has sat in the back of at least one of our minds the

past 6 year, and informed the ideas that have ended up in section 5.

55

8 Appendix: Case study of a consolidated
feature in the Application Layer

As previously alluded to in 3.7, the driver is somewhat split and

includes a newer “batch mode”, used to implement --make and

--interactive, and an older “one-shot mode”. The tension between The name “batch mode” is rather

confusing, since the traditional “one-

shot mode” of GHC is the epitome

of the traditional “batch compiler”

model. The root confusion is that the

word “batch” is being used in two

senses. “Batch mode” comes from

the originalmeaning of theworld, as

that mode exists to handle multiple

Haskell modules together in a batch.
“Batch compiler” presumably comes

from the connotation of batch pro-

cessing systems being long latency

and non-interactive in comparison

to client-server architectures.

those two has long ben kept in an awkward compromised state, but

we are happy to report this situation has dramatically improved in

recent years relatively independently from our efforts.

Presaging this work is a bug fix (summarized in listing 12) John

helped work on. The fix involved removing a restriction imposed

on the driver to fix a bug in backpack. First of all, we do admit

this is a blatant “ubiquitous language” violation, as the graph data

type is still called ModuleGraph even though it is no longer just about

modules.
1
That said, we don’t regret the change itself.

1: Why John might have been so

sloppy has been briefly discussed

in section 5.4.1.

The name “module graph” implies this is Domain Layer function-

ality, but, as we have asserted, the driver forms GHC’s Application

Layer. The key is an understanding that thiswas always amisnomer

— while the module graph did previously just contain modules,

this was never the point. Rather, the graph’s purpose is to track the

tasks the “batch mode” compilation manager is responsible for

doing, whatever those tasks may be, and their dependencies.

That the work items all previously corresponded to modules

merely indicated that we had not yet exposed the full range of

tasks GHC performs to the compilation manager, still executing

some imperatively as part of other tasks.

Listing 12: Commit broadening the

scope of the module graph

1 commit 2113a1d600e579bb0f54a0526a03626f105c0365

2 Date: Thu Apr 30 11:09:24 2020 -0400

3

4 Put hole instantiation typechecking in the module graph and

fix driver batch mode backpack edges

5

6 [...]

7

8 --- | A ModuleGraph contains all the nodes from the home package (

only).

9 --- There will be a node for each source module, plus a node for

each hi-boot

10 --- module.

11 +-- | A ’@ModuleGraphNode@’ is a node in the ’@ModuleGraph@’.

12 +-- Edges between nodes mark dependencies arising from module

imports

13 +-- and dependencies arising from backpack instantiations.

14 +data ModuleGraphNode

15 + -- | Instantiation nodes track the instantiation of other units

16 + -- (backpack dependencies) with the holes (signatures) of the

current package.

17 + = InstantiationNode InstantiatedUnit

18 + -- | There is a module summary node for each module, signature,

and boot module being built.

56

https://gitlab.haskell.org/ghc/ghc/-/commit/2113a1d600e579bb0f54a0526a03626f105c0365

19 + | ModuleNode ExtendedModSummary

20 +

21 +-- | A ’@ModuleGraph@’ contains all the nodes from the home

package (only). See

22 +-- ’@ModuleGraphNode@’ for information about the nodes.

23 +--

24 @@

25 --

26 -- The graph is not necessarily stored in topologically-sorted

order. Use

27 -- ’GHC.topSortModuleGraph’ and ’GHC.Data.Graph.Directed.

flattenSCC’ to achieve this.

28 data ModuleGraph = ModuleGraph

29 - { mg_mss :: [ModSummary]

30 + { mg_mss :: [ModuleGraphNode]

31 , mg_non_boot :: ModuleEnv ModSummary

32 -- a map of all non-boot ModSummaries keyed by Modules

33 , mg_boot :: ModuleSet

Matthew Pickering independently came to similar conclusions

as us. His series of driver refactors including 25977ab5, 421beb3f,

5f0d2dab, through fd42ab5f, along with f243acf4 by DivamNarula

but done in close collaboration with Matthew Pickering, have

dramatically increased the progress of breaking up imperative

spaghetti code and buildingmore and finer-grained data structures

to separate the work instead. This includes adding a third sort of

task node to “module graph”, and creating other data structures

which are slated to eventually merge with it. All together, these

are strong initial steps in separating “planning” and “execution”

as discussed in section 4.2.3.

Matt’s work on this front should end up merging with our

work factoring out component-wise configuration records in an

elegant way. Currently, planning data structures like the “module

graph” sometimes contain DynFlags, e.g., as in Listing 1, and other

times defer threading it (or HscEnv) until the execution time. But

neither approach is fully satisfactory. Services are only needed for

execution and so should be threaded, but configuration records

are quite arguably part of the plan.

1 -- | Data for a module node in a ’ModuleGraph’. Module nodes of

the module graph

2 -- are one of:

3 --

4 -- * A regular Haskell source module

5 -- * A hi-boot source module

6 --

7 data ModSummary

8 = ModSummary {

9

10 {- ... -}

11

12 ms_hspp_opts :: DynFlags,

13 -- ^ Cached flags from @OPTIONS@, @INCLUDE@ and

@LANGUAGE@

57

https://gitlab.haskell.org/ghc/ghc/-/commit/25977ab542a30df4ae71d9699d015bcdd1ab7cfb
https://gitlab.haskell.org/ghc/ghc/-/commit/421beb3f93d1986f0fabeaad6947e3ac4b5304ea
https://gitlab.haskell.org/ghc/ghc/-/commit/5f0d2dab9be5b0f89d61e9957bb728538b162230
https://gitlab.haskell.org/ghc/ghc/-/commit/fd42ab5fa1df847a6b595dfe4b63d9c7eecbf400
https://gitlab.haskell.org/ghc/ghc/-/commit/f243acf4d7322a15e9eb6e432c490a4d6db741df

14 -- pragmas in the modules source code

15

16 {- ... -}

17

18 }

Let’s unpack the planning and execution separation further.

Some parts of the overall configuration are inspected when creat-

ing the plan, and other parts can be passed off as block boxes (from

the perspective of the driver) to the domain layer components

below. Those black boxes are precisely the component-specific

configuration records! If we store them inside the plan data struc-

tures, then the plan execution can only take services, not further

configuration as arguments, and then finally have completed a

proper planning–executing separation. In section 4.2.1, we discussed some

reasons why we thought it an XYZEnv

combining the services and config-

uration for one component was ill-

advised. The section above provides

one more reason. Since the end goal

is thus for the configuration to live

in the plan, the services to only be

passed in when executing the plan,

those two sorts of parameters would

be coming from different informa-

tion flows anyways. Combining pa-

rameters together is most useful if

their arguments are likely to come

from the same place, but we see now

that that is intentionally not the case

in the end goal design.

Finally we note in passing that HLS’s own task dependency

structures and GHC’s ought to be able to converge over time. The

HLS Application Layer is inherently more complex, as it underpins

a more complex Presentation Layer, but it should be able to reuse

many of the same building blocks.

References

[1] Simon Peyton Jones, ed. Haskell 1998 Revised Report. http:
//www.haskell.org/definition/. 2003 (cited on page 2).

[2] SimonMarlow, ed.Haskell 2010Report. http://www.haskell.
org/definition/haskell2010.pdf (cited on page 2).

[3] Eric Evans. Domain-Driven Design: Tackling Complexity in the
Heart of Software. 2003 (cited on pages 4, 5, 28–31, 38, 43, 44,

50, 54).

[4] FalconMomot et al. “The Seven Turrets of Babel: A Taxonomy

of LangSec Errors and How to Expunge Them”. In: 2016
IEEE Cybersecurity Development (SecDev). 2016, pp. 45–52. doi:

10.1109/SecDev.2016.019 (cited on page 5).

[5] Alexis King. Parse, don’t validate. https://lexi-lambda.
github.io/blog/2019/11/05/parse-don-t-validate/.

Nov. 2019 (cited on pages 6, 30).

[6] Mike Schroeder. “The protection of information in computer

systems”. In: Proceedings of the IEEE. Sept. 1975 (cited on

page 10).

[7] Peter Van Roy and Seif Haridi. Concepts, Techniques, and
Models of Computer Programming. The MIT Press, 2004 (cited

on page 17).

[8] TimSheardandSimonPeyton Jones. “Templatemeta-programming

for Haskell”. In: Proceedings of the 2002 Haskell Workshop, Pitts-
burgh. Oct. 2002, pp. 1–16 (cited on page 26).

58

http://www.haskell.org/definition/
http://www.haskell.org/definition/
http://www.haskell.org/definition/haskell2010.pdf
http://www.haskell.org/definition/haskell2010.pdf
https://doi.org/10.1109/SecDev.2016.019
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/
https://lexi-lambda.github.io/blog/2019/11/05/parse-don-t-validate/

[9] Simon Marlow and Simon Peyton Jones. “The Glasgow

Haskell Compiler”. In: The Architecture of Open Source Appli-
cations, Volume II. 2011 (cited on pages 27, 55).

[10] Hai Liu et al. “The Intel Labs Haskell Research Compiler”. In:

Proceedings of the 2013 ACM SIGPLAN Symposium on Haskell.
Haskell ’13. Boston, Massachusetts, USA: Association for

Computing Machinery, 2013, pp. 105–116 (cited on page 39).

[11] Csaba Hruska. External STG Interpreter. https : / / www .
patreon.com/posts/external- stg- 49857800. Apr. 10,

2021 (cited on page 39).

[12] Paul Chiusano et al. Unison. http://unisonweb.org. 2015
(cited on pages 40, 55).

[13] Philip Wadler. “Theorems for free!” In: Functional Program-
ming Languages and Computer Architecture. ACM Press, 1989,

pp. 347–359 (cited on page 52).

[14] Piotr Kaźmierczak. The LSP Revolution. https://piotr.
is/2020/the-lsp-revolution/. Nov. 19, 2020 (cited on

page 53).

[15] NikoMatsakis andAleksey Kladov. Transition to rust-analyzer
as our official LSP (Language Server Protocol) implementation.
https://github.com/rust-lang/rfcs/blob/master/

text/2912-rust-analyzer.md. 2020 (cited on page 54).

[16] Neil Mitchell. Making a Haskell IDE. https://ndmitchell.
com/downloads/slides-making_a_haskell_ide-07_sep_

2019.pdf. Sept. 7, 2019 (cited on page 54).

[17] Olle Fredriksson. Sixten’s query-based compiler architecture.
https://github.com/ollef/sixten/blob/master/docs/

QueryCompilerDriver.md. 2019 (cited on page 55).

[18] Edward Z. Yang. Seize the Means of Production (of APIs).
http://blog.ezyang.com/2016/09/seize-the-means-

of-production-of-apis/. Sept. 2016 (cited on page 55).

59

https://www.patreon.com/posts/external-stg-49857800
https://www.patreon.com/posts/external-stg-49857800
http://unisonweb.org
https://piotr.is/2020/the-lsp-revolution/
https://piotr.is/2020/the-lsp-revolution/
https://github.com/rust-lang/rfcs/blob/master/text/2912-rust-analyzer.md
https://github.com/rust-lang/rfcs/blob/master/text/2912-rust-analyzer.md
https://ndmitchell.com/downloads/slides-making_a_haskell_ide-07_sep_2019.pdf
https://ndmitchell.com/downloads/slides-making_a_haskell_ide-07_sep_2019.pdf
https://ndmitchell.com/downloads/slides-making_a_haskell_ide-07_sep_2019.pdf
https://github.com/ollef/sixten/blob/master/docs/QueryCompilerDriver.md
https://github.com/ollef/sixten/blob/master/docs/QueryCompilerDriver.md
http://blog.ezyang.com/2016/09/seize-the-means-of-production-of-apis/
http://blog.ezyang.com/2016/09/seize-the-means-of-production-of-apis/

	Modularizing GHC
	1 Abstract
	2 Introduction
	3 Some design defects in GHC
	3.1 Shotgun parsing
	3.2 Command-line flags (DynFlags)
	3.2.1 Layering Issues
	3.2.2 Shotgun parsing DynFlags
	3.2.3 When immutable becomes mutable
	3.2.4 Why not make DynFlags implicit?
	3.2.5 The genesis of a global mutable DynFlags variable
	3.2.6 When immutable really becomes mutable: GHCi

	3.3 Top-level session state (HscEnv)
	3.3.1 HscEnv's DynFlags
	3.3.2 HscEnv's caches
	3.3.3 Code reuse

	3.4 Interpreter
	3.4.1 Internal interpreter
	3.4.2 Avoiding the use of the interpreter
	3.4.3 Working around ``ways''
	3.4.4 -dynamic-too
	3.4.5 External interpreter

	3.5 Plugins and Hooks
	3.6 Template Haskell
	3.7 The Driver

	4 Refactoring GHC using Domain-Driven Design
	4.1 Ubiquitous Language and Type-Driven Design
	4.2 Layering and Componentization
	4.2.1 Infrastructure Layer
	4.2.2 Domain Layer
	4.2.3 Application Layer
	4.2.4 Presentation Layer / User Interface Layer

	4.3 Supple Design

	5 Method
	5.1 Introducing a module hierarchy
	5.2 Removing accidental coupling
	5.2.1 Component-wise configuration
	5.2.2 How to proceed: harder then easier

	5.3 Removing undesirable coupling
	5.3.1 Related GHC projects

	5.4 Maintenance
	5.4.1 Better continuous integration
	5.4.2 Design that maintains itself

	6 Conclusion
	7 Appendix: Related work
	7.1 Related GHC projects
	7.2 IDEs vs batch compilation
	7.3 Rust
	7.4 HLS perspective
	7.5 Greenfield experiments
	7.6 Misc

	8 Appendix: Case study of a consolidated feature in the Application Layer
	References

